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prediction

machine learning model f




prediction

machine learning model f

non-equivariant models explicitly need to learn any transformed sample




machine learning model f

group action
g>

prediction

G-equivariance: commutativity with G-actions

flgex) = g>f(x)
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group action
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machine learning model f

prediction

G-equivariance: commutativity with G-actions
flg>z) = g>f(x)

— reduced number of parameters

—> the model generalizes over G-actions

group action
g




convolutional neural networks are trans/ation equivariant




convolutional neural networks are trans/ation equivariant

segment

my research: generalize equivariant CNNsto ... ... larger symmetry groups



convolutional neural networks are trans/ation equivariant

coordinate
independent

convolution

isometry | action

coordinate
independent

convolution

my research: generalize equivariant CNNsto ... ... larger symmetry groups

... more general manifolds



convolutional neural networks are trans/ation equivariant

my research: generalize equivariant CNNsto ... ... larger symmetry groups
... more general manifolds

... gauge symmetries



convolutional neural networks are trans/ation equivariant

how? — equivariant / steerable kernels

rotation steerable kernels

S

scalar scalar scalar
scalar vector irrep order 3

my research: generalize equivariant CNNs to ...

reflection steerable kernels

scalar

I

scalar

.. larger symmetry groups
.. more general manifolds

.. gauge symmetries
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scalar
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Outline

Equivariant Neural Networks & Weight Sharing Patterns

Euclidean CNNs - Translation Equivariance

Euclidean CNNs - Affine Group Equivariance

G-steerable Kernels

Manifolds & Gauge Symmetries



Multilayer perceptrons & symmetries

MLPs are universal function approximators ~ f : RY — RM
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Multilayer perceptrons & symmetries

Images are high dimensional vectors —— can be processed by MLPs
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Multilayer perceptrons & symmetries

Images are high dimensional vectors —— can be processed by MLPs
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MLPs don’t generalize over geometric transformations . .3 — equivariance!
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reflect reflect

control policy



control policy

transform transform

control policy



identify
dangerous objects

permute permute

identify
dangerous objects



Toy example: (anti)symmetric linear regression

consider curve fitting via polynomial lineaer regression:  f(x) := g wy, "
n

=|Y



Toy example: (anti)symmetric linear regression

consider curve fitting via polynomial lineaer regression:  f(x) := g wy, "
n

suppose the ground truth is known to be symmetric: f(—xz) = f(x)

flx) A

BY



Toy example: (anti)symmetric linear regression

flx) A

consider curve fitting via polynomial lineaer regression:  f(x) := Z wy, "
n
suppose the ground truth is known to be symmetric: f(—x) = f(x)

this prior knowledge is incorporated by constraining the model to f(x) = Z Wy, "

n even

BY



Toy example: (anti)symmetric linear regression

consider curve fitting via polynomial lineaer regression:  f(x) := g wy, "
n

suppose the ground truth is known to be antisymmetric:  f(—z) =

this prior knowledge is incorporated by constraining the model to

—f(x)

flx) = Z wp x"

n odd

BY



Toy example: (anti)symmetric linear regression

consider curve fitting via polynomial lineaer regression:  f(x) := Z wy, "
n
suppose the ground truth is known to be antisymmetric:  f(—z) = —f(z)
this prior knowledge is incorporated by constraining the model to f(g:) = Z (T Ak
n odd

takeaway: equivariance —— constraint on model parameters (“weight sharing patterns”)

BY



Layer-wise equivariant neural networks

a neural network is a sequence of layers  (feed forward NN)

in 1 2 Tt N—1 out



Layer-wise equivariant neural networks

an equivariant neural network is an equivariant sequence of layers

Ll L2 LS LN—l LN
‘/—_i'n—)‘rl—)fé_) _)]:N—l—)f;)ur’
tDln t Dout
Fp—m——> F, —————> F, ——> — Fp . ————— J



Layer-wise equivariant neural networks

an equivariant neural network is an equivariant sequence of layers

common approach: layer-wise equivariance

L, L, L Ly Ly
Jyg—————— f—————— f,—— v — F, ————» F
1> i D> t >, >y LDt
S ——————— f—————— ] ——a . — . ———



Layer-wise equivariant neural networks

an equivariant neural network is an equivariant sequence of layers

common approach: layer-wise equivariance

step 1. specify feature spaces and group actions

L, L, L
Fn—————> F —>—>

to>,



Layer-wise equivariant neural networks

an equivariant neural network is an equivariant sequence of layers

common approach: layer-wise equivariance

step 1. specify feature spaces and group actions

step 2: find equivariant maps

L, ) I

£ _,~_2‘, H—

to>,



Equivariant linear layers (“intertwiners”)

consider a linar layer / matrix multiplication R™ — R™, x+— Wx

equivariance w.r.t. representations pij, on R"™ and poyt on R™ means:

Wpin(9) = pous(9)W = (i @ pout] (g) vec(W) = vec(W)

equivariant matrices are themselves invariants / symmetric —— characterized by “weight sharing patterns”:




Alternative approaches - data augmentation

apply random transformations to training data + targets

downside: less robust, converges slowly, worse final performance

sample data randomly transform train
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Alternative approaches - group averaging

symmetrize model by applying it to any transformed inputs & aggregating outputs

downside: expensive for large groups

G-transform input non-equivariant realign & aggregate outputs
model
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Alternative approaches - group averaging

transform input to canonical pose before applying model

downside: non-robust,

continuous canonicalization (choice of orbit representative) topologically impossible

canonicalize non-equivariant (canonicalize)™

model
~ ?
- R
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Translation equivariant Euclidean CNNs

convolution
&
!

translation translation

convolution




convolution for edge detection learned filter bank




convolution for edge detection learned filter bank

usually: convolution = equivariance (sufficiency)

our approach: convolution <= equivariance (necessity)



recall:

step 1. specify feature spaces and group actions

step 2: find equivariant maps

L, (Ly) Ly

: ~—
@ ——@—

t > t >, t >,

-— feature maps
-— convolutions / bias summation / ...
Ly, Ly
— g s —————— F
t DN—1 t Dout
— Fp . —————— J



Feature maps as translation group representations

spatial / pixel dimensions / feature channels
d7

discretized feature maps on R? are arrays of shape (Xi,...,X




Feature maps as translation group representations

spatial / pixel dimensions / feature channels
d7

discretized feature maps on R? are arrays of shape (Xi,...,X

continuous feature maps are functions f : R* — R¢ assigning features f(x) € R® to points x € R?




Feature maps as translation group representations

spatial / pixel dimensions / feature channels
d>

discretized feature maps on R? are arrays of shape (X1,...,X
continuous feature maps are functions f : R* — R¢ assigning features f(x) € R® to points x € R

feature maps carry a translation group action [t 1> f|(z) := f(z — t)




Feature maps as translation group representations

spatial / pixel dimensions / feature channels
d>

discretized feature maps on R? are arrays of shape (X1,...,X
continuous feature maps are functions f : R* — R¢ assigning features f(x) € R® to points x € R

feature maps carry a translation group action [t 1> f|(z) := f(z — t)
f - >
‘ -

this definition includes point clouds:  f(x) = Z frnd(x—xy) - ‘
n

=



Translation equivariant CNN layers

conventional CNN layer := any translation equivariant function between feature maps

equivariant
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Translation equivariant CNN layers

conventional CNN layer := any translation equivariant function between feature maps

translation spatially invariant
: P y

. . (“weight sharing”)
equlvariance neural connect|V|ty

general result:



Translation equivariant CNN layers

conventional CNN layer := any translation equivariant function between feature maps

independent linear weights )

translation spatially invariant 7o)
eneral result: o — . (“weight sharing”)
9 equivariance neural connectivity %}
i )/l I\
I/Y N\
. . equivariance . ] -
examples: linear map convolution (Theorem 3.2.1) \ J

shared kernel (convolution) )

<K7 (')>
(K7 (')>

R |

L J

[

Theorems proven in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 3.2)



Translation equivariant CNN layers

conventional CNN layer := any translation equivariant function between feature maps

general bias field

translation spatially invariant , ,
general result: L —— P y . (“weight sharing”) +b(z1)
equivariance neural connectivity bz
[ DR
[ D
| [T \
examples: linear map YRR convolution (Theorem 3.2.1) \

constant bias field

bias field summation =~ AR shared bias (Theorem 3.2.2)
Go
+2)
C——
| 1\
[ |

Theorems proven in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 3.2)



Translation equivariant CNN layers

conventional CNN layer := any translation equivariant function between feature maps

different nonlinearities

translation spatially invariant ReLU
eneral result: . — L (“weight sharing”) E% -
¢ equivariance neural connectivity Eg‘
[ DR
[ el
[ | I \
examples: linear map YRR convolution (Theorem 3.2.1) \

equivariance

bias field summation shared bias (Theorem 3.2.2) ROLUE

equivariance

independent nonlinearities

shared nonlinearity (Theorem 3.2.3) ST
{

Theorems proven in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 3.2)



Translation equivariant CNN layers

conventional CNN layer

any translation equivariant function between feature maps

translation
general result:

varying pooling windows
spatially invariant

equivariance

o (“weight sharing”)
neural connectivity

[T \ \
1] I\
L] 1%\

. . equivariance
examples. linear map ————

convolution (Theorem 3.2.1)

shared bias

. \ . equivariance
bias field summation =~ S2HYamanee .

(Theorem 3.2.2)

pool
independent nonlinearities ARy shared nonlinearity

(Theorem 3.2.3)

. . . equivariance
different pooling windows =~ ——— e,

shared pooling window

(Theorem 3.2.4)

Theorems proven in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 3.2)



Affine group equivariant Euclidean CNNs

(G-steerable

kernel
fiber action % (/) fiber action
Pin(9) ‘ —< % Pour(9)
(tg)™ (tg)™
spatial action spatial action




Symmetries of Euclidean space - translations

translations (R?, +)

l (R?, +)




Symmetries of Euclidean space - isometries

translations

|/ rotations + reflections

Euclidean group E(d) := (R%, +) x O(d)

-€ / >
u




Symmetries of Euclidean space - affine

translations

structure group (rotations / reflections /
scaling / shearing / ...)

Affine groups Aff(G) := (R%,+)x G G < GL(d)




Feature fields as affine group representations

feature vector fields ... ... are functions f : RY — R€ (like feature maps)

... carry an Aff(G)-action (details depend on field type p)

\tg Pector




Feature fields as affine group representations

feature vector fields ... ... are functions f : RY — R€ (like feature maps)
... carry an Aff(G)-action (details depend on field type p)
examples: scalar fields s : RY — R' transform like: [(tg) > s](z) = s((tg)"'z)

tangent vector fields v : RY — R? transform like: [(tg) >v](z) = g- v ((tg) ')




Feature fields as affine group representations

feature vector fields ... ... are functions f : RY — R€ (like feature maps)
... carry an Aff(G)-action (details depend on field type p )
examples: scalar fields s : RY — R' transform like: [(tg) > s](z) =

tangent vector fields v : RY — R% transform like: [(tg) > v](z) =

Aff(G) acts here by... 1) moving feature vectors on R¢

2) G-transforming feature vectors in R¢



Feature fields as affine group representations

feature vector fields ... ... are functions f : R? — R (like feature maps)
... carry an Aff(G)-action (details depend on field type p )
examples: scalar fields s : R? — R' transformlike: [(tg) > s](z) =[ 1:s [
tangent vector fields v : RY — R? transform like: [(tg) > v](z) =| g-|v

p-feature fields [ : R? — R® transform like:  [(tg) > f] () =|p(g)|f

| J

G-representation

Aff(G) acts here by... 1) moving feature vectors on R¢

2) G-transforming feature vectors in R¢



Feature fields - examples

fluid flow EM field strength diffusion tensor image Tensor Field Net features

(vector) (bivector / anti-symm. (0,2)-tensor) (symm. pos. def. (1,1)-tensor) (SO(3)-irreps)

p(g) =g (subspace of) p(g) =g~ '®g~'  (subspaceof) p(g) =g®Rg " p(g) = D’(g)




Affine group equivariant CNN layers

steerable CNN layer := any Aff(G)-equivariant function between feature fields

input field,
type pin

output field,
type Pout

=

affine l action

affine l action

f§.—>




Affine group equivariant CNN layers

steerable CNN layer := any Aff(G)-equivariant function between feature fields

general result: Aff(G)-equivariance = Aff(G)-invariant neural connectivity

!

1) spatial weight sharing

(R4, +) x G =: Aff(G)

2) G-steerability |

DI E @ @ @8

scalar scalar scalar scalar scalar scalar
scalar vector irrep order 3 scalar pseudoscalar regular

Theorems proven in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 4.3)



taxonomy of equivariant CNNs

space matrix group global symmetry  representation citation
G Aff(G) p
R® {e} (R?,4) trivial conventional CNNs [175, 348]
2 scaling & (R, +) xS regular [248]
R! . regular [193]
flection R R! R
reflection (R +) > irreps [193]
reflection R (R?,4) x R regular [322]
6 irreps [335, 322]
[71, 52, 358, 53, 324, 12, 125, 258, 275, 27, 70, 76]
7 regular [322, 110, 170, 279, 317, 247, 215, 276, 277, 31, 23]
SO(2) SE(2) [270, 10,91, 306, 113, 216, 311, 122, 223, 43, 116]
8 quotients [53, 322]
9 regularmtrivial [52, 195, 322]
10 5 regularioivector [196, 322]
R
1 trivial [144, 322]
12 irreps [322]
o it [71, 52, 125, 53, 322]
: 216, 110, 270, 23
0(2) E(2) : L I
14 quotients [53]
15 regular “ rivial [322]
16 induced SO(2)-irreps [322]
17 . ¢ ) ) regular [334, 281, 10, 359]
18 e e (R +) = S regular%trivial [107]
19 SO(2) x 8 (R®, +) x (SO(2) x&)  regular [349]
20 irreps [323, 301, 211, 161, 3, 184]
21 . quaternion [345]
" SO@3) SE(3) regular [91, 329, 333]
- rcgularmlrivia] [4]
e irreps 8]
g regular [329]
0(3) iy quotient O(3)/ O(2) [136]
27 irrep——strivial [233]
28 Cy (R +) x Cy4 regular [289]
29 Dy (RS, +) x Dy regular [289]
50 Minkowski S0(d-1,1)  (R% +) x SO(d-1,1) irreps [274]




G-steerable kernels
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G-steerable kernels - intuition

convolution kernels summarize their field of view around = € R? into a feature vector f(x) € R

response feature vector ——  f(x)

kernel

N
~
N
N
’
’
’
’
v

g

input feature vector field ——



G-steerable kernels - intuition

convolution kernels summarize their field of view around = € R? into a feature vector f(x) € R

G-steerable kernels guarantee:  G-trafo of their input field of view =- G-trafo of the output feature vector

G-t f f
response feature vector ——  f(x) om0 > p(9)f(x)

T kernel response T

G-steerable kernel

G-transform of
input field

input feature vector field ——




G-steerable kernels - intuition

convolution kernels summarize their field of view around = € R? into a feature vector f(x) € R
G-steerable kernels guarantee:  G-trafo of their input field of view =- G-trafo of the output feature vector

convolutions with G-steerable kernels are Aff(G)-equivariant

steerable convolution
(with G-steerable kernel)

e | —EE—IE

affine group \ action affine lgroup action

f<—g—[S

steerable convolution




G-steerable kernels - mathematical definition

discretized convolution kernels are arrays of shape (X, ..., X4, Cout, Cin)

spatial / pixel dimensions J L matrix dimensions, mapping in — out features




G-steerable kernels - mathematical definition

discretized convolution kernels are arrays of shape (Xi, ..., X4, Cout, Cin)

spatial / pixel dimensions matrix dimensions, mapping in — out features

continuous kernels are matrix-valued fields: K : R% s RCoutXcin (% @)



G-steerable kernels - mathematical definition

discretized convolution kernels are arrays of shape (Xi, ..., X4, Cout, Cin)

spatial / pixel dimensions matrix dimensions, mapping in — out features

continuous kernels are matrix-valued fields: K : R% s RCoutXcin (@ @)

G-steerable kernels satisfy a linear G-equivariance constraint:

———pout(9) K (z)pin(9)™"  VgeG, zeR?

G-action on spatial dimension J G-action on matrix rows / columns



G-steerable kernel bases

convolution kernels K : R? —s RCuwtX¢n form a vector space

the G-steerability constraint is /inear

—> steerable kernels ... ... form a vector subspace

... can be expanded from a steerable basis set (params = expansion weights)




Reflection steerable kernels

reflection group:  Zy = {e,r} with r’=e or 1 '=r

the general G-steerability constraint
K(g2) = ——pou( ) K@)pnl9)”" ¥ geC, z R
| det 7|

simplifies to:
K(rx) = pout(r)K(z)pin(r) Vo c R



Reflection steerable kernels

field type p p(e) p(reflect) original field reflected field
trivial / scalar (1) (1)
sign-flip / (1) (—1)

pseudo-scalar

| 10
regular 01




Reflection steerable kernels

scalar field convolution with scalar field
symmetric kernel

__,

__,




Reflection steerable kernels

scalar field convolution with pseudoscalar field
antisymmetric kernel

__,




Reflection steerable kernels

scalar field convolution with regular feature field
regular kernel




Reflection steerable kernels

pon~Ln trivial sign-flip regular

- (@) (®) @)
-~ (@ @ @
@ (@
o @

regular

Full derivation of these examples in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 5.2)



SO(2)-steerable kernels

rotational symmetry constraint = affects only angular part, radialpart unconstrained

circular harmonics angular parts

exemplary radial parts
(unconstrained)
@@
WE OO
OO
OO0

SPOO

O0®
000
O0®E
QOO
COEE
)

-«

Full derivation for SO(2) in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 5.3.4)



SO(2)-steerable kernels

rotational symmetry constraint =  affects only anguiar part, radialpart unconstrained

Full derivation for SO(2) in (Weiler et al. 2023, FEquivariant and Coordinate Independent Convolutional Networks, Section 5.3.4)



SO(2)-steerable kernels

rotational symmetry constraint =  affects only anguiar part, radialpart unconstrained

Full derivation for SO(2) in (Weiler et al. 2023, FEquivariant and Coordinate Independent Convolutional Networks, Section 5.3.4) (this diagram is not commutative)



SO(2)-steerable kernels

rotational symmetry constraint =  affects only anguiar part, radialpart unconstrained

Laplace
= 82+0,

-

Full derivation for SO(2) in (Weiler et al. 2023, FEquivariant and Coordinate Independent Convolutional Networks, Section 5.3.4) (this diagram is not commutative)



SO(2)-steerable kernels

rotational symmetry constraint = affects only angular part,

Laplace
= 82+0,

radial part unconstrained

-

Full derivation for SO(2) in (Weiler et al. 2023, FEquivariant and Coordinate Independent Convolutional Networks, Section 5.3.4)

(this diagram is not commutative)



SO(3)-steerable kernels

rotational symmetry constraint = affects only anguiar part, radialpart unconstrained

scalar field vector field

Full derivation for SO(3) in (Lang & Weiler 2021, A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5)



SO(3)-steerable kernels

rotational symmetry constraint = affects only anguiar part, radialpart unconstrained

scalar field vector field

Full derivation for SO(3) in (Lang & Weiler 2021, A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5) (this diagram is not commutative)



SO(3)-steerable kernels

rotational symmetry constraint = affects only anguiar part, radialpart unconstrained

scalar field vector field

Laplace

( J

Full derivation for SO(3) in (Lang & Weiler 2021, A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5) (this diagram is not commutative)



SO(3)-steerable kernels

rotational symmetry constraint

— affects only angular part,

radial part unconstrained

A\ (
Laplace
)
scalar field vector field
S
Laplace SR
R e
A+
TRy
T 3
Y
gradodiv

Full derivation for SO(3) in

(Lang & Weiler 2021,

A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5)

So,
S
we

(this diagram is not commutative)



SO(3)-steerable kernels

rotational symmetry constraint

Laplace

( J

—

STEERABLE PARTIAL DIFFERENTIAL OPERATORS FOR

EQUIVARIANT NEURAL NETWORKS

Maurice Weiler
University of Amsterdam
m.weiler.ml@gmail.com

Erik Jenner*
University of Amsterdam
erik@ejenner.com

affects only angu

Full derivation for SO(3) in

\ &
o g 8 @
)
scalar field vector field
s N
"
DT - curl
T T
o e
a0
QP
S F NI
=
L7
} o @ @ g

(Lang & Weiler 2021,

A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5)

(this diagram is not commutative)



Clifford-Steerable Convolutional Neural Networks

Lorentz group steerable kernels

Maksim Zhdanov' David Ruhe” '2° Maurice Weiler !

Ana Lucic*  Johannes Brandstetter’® Patrick Forré '>

: : 1 : : : : —
Euclidean space R?, metric 0 ? Minkowski spacetime R%!, metric (1) (1)




Lorentz group steerable kernels

Euclidean R?

Minkowski Rb!

scalar

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov' David Ruhe”'2°  Maurice Weiler "'

Ana Lucic® Johannes Brandstetter °® Patrick Forré '’

vector

@




Clifford-Steerable Convolutional Neural Networks

Lorentz group steerable kernels

Maksim Zhdanov' David Ruhe” '2° Maurice Weiler "

Ana Lucic® Johannes Brandstetter °® Patrick Forré '’

scalar (1=0) vector (1=1)

Minkowski R12 % = : !




Quantum Mechanics Deep Learning

operators A acting on states |¢) kernels K acting on features f(x)



Quantum Mechanics Deep Learning

operators A acting on states |¢) kernels K acting on features f(x)

symmetries = representation operator constraint symmetries = steerable kernel constraint

Zj gijA\j = [/j\'(g)T A\z ﬁ(g) (e.g. vector operator) K(g_lx) = pPout (g)1L K(LE) pin(g)



Quantum Mechanics

operators A acting on states |4)

symmetries = representation operator constraint

Z ' gijA\j — ﬁ(g)T A\z ﬁ(g) (e.g. vector operator)
J

selection rules for quantum state transitions

Energy A 1=0 L=l =2
Es +

By 1

Ei 4

Deep Learning

kernels K acting on features f(x)

symmetries = steerable kernel constraint

K(g7'%) = pour(9)" K(2) pin(9)

selection rules for equivariant message passing

input
field type

harmonic
kernel

output
field type




Quantum Mechanics Deep Learning

operators A acting on states |[) kernels K acting on features f(z)
symmetries = representation operator constraint symmetries = steerable kernel constraint
Zj gijA\j — ﬁ(g)T A\z ﬁ(g) (e.g. vector operator) K(g_lx) = Pout (g)T K(Q?) pin(g)
selection rules for quantum state transitions selection rules for equivariant message passing
Energy A 1=0 =1 =2 input
E; 4 field type lin K 2
non-zero
E; 1 ) harmonic .
matrix elements! fopng] 41
NN
Bt field type Lout . @




Wigner—Eckart theorem

v

>

operators / kernels are fully described by their matrix elements. (p|Alv) or K, (x) ,ui (%@)



Wigner—Eckart theorem

t >
operators / kernels are fully described by their matrix elements. (p|Alv) or K, (x) 0 %@

symmetries couple matrix elements =- reduced degrees of freedom / parameters

Clebsch-Gordan coeffs. (fixed)

e

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators) : <JM‘ A\%) ‘ln> = )\(Jlj) <JM ‘ Jm; ln>

“reduced matrix element”
(single d.of. instead of (2J41)(214+1)(25+1) )



Wigner—Eckart theorem

t >
operators / kernels are fully described by their matrix elements. (p|Alv) or K, (x) 0 %@

symmetries couple matrix elements =- reduced degrees of freedom / parameters

Clebsch-Gordan coeffs. (fixed)

e

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators) : <JM‘ A\SZL) ‘ln> = )\(Jlj) <JM ‘ Jm; ln>

“reduced matrix element”
(single d.of. instead of (2J41)(214+1)(25+1) )

generalized Wigner-Eckart theorem for G-steerable kernels :

my [J(GI)] dj

K](\j;_l)(x) = (JM|K(x)|ln) = ZZ Z Z Z JM{CJZS}JM’ s JM’|jm In)- (i, jm|:1:>

jEG i=1 s=1 m= lM’fl

kernel irrep Clebsch-Goraan harmonics
matrix elements endomorphisms coefficients (Peter Wey/)



Wigner—Eckart theorem

t >
operators / kernels are fully described by their matrix elements. (p|Alv) or K, (x) 0 %@

symmetries couple matrix elements =- reduced degrees of freedom / parameters

Clebsch-Gordan coeffs. (fixed)

e

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators) : <JM‘ A\%) ‘ln> = )\(Jlj) <JM ‘ Jm; ln>

“reduced matrix element”
(single d.of. instead of (2J41)(214+1)(25+1) )

generalized Wigner-Eckart theorem for G-steerable kernels:  «— assuming compact G < U(d)

my [J(GI)] dj

K](\j:l)(x) = (JM|K(x)|ln) = ZZ Z Z Z JM|CJZS}JM’ s JM’|jm In)- (i, jm|:1:>

jEG i=1 s=1 m= lM’fl

kernel irrep Clebsch-Goraan harmonics
matrix elements endomorphisms coefficients (Peter Wey/)
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Implicit steerable kernels

convolution kernels are functions K : R% — [RCout*Cin

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

R¢ G-equivariant
- " - implicit kernel MLP
- o
g > o o —
O
. J

Implicit Convolutional Kernels for Steerable CNNs

Maksim Zhdanov Nico Hoffmann Gabriele Cesa

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov David Ruhe Maurice Weiler "
Ana Lucic Johannes Brandstetter Patrick Forré
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Implicit steerable kernels

convolution kernels are functions K : R% — [RCout*Cin

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

advantage: can additionally be made

input feature dependent

weight = 1.0 implicit kernel MLP

Implicit Convolutional Kernels for Steerable CNNs

Maksim Zhdanov Nico Hoffmann Gabriele Cesa

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov David Ruhe Maurice Weiler "

Ana Lucic Johannes Brandstetter Patrick Forré





A PROGRAM TO BUILD

escnn PyTOI’Ch Iibrary E(n)-EQUIVARIANT STEERABLE CNNS

Gabriele Cesa Leon Lang Maurice Weiler
Qualcomm Al Research* University of Amsterdam  University of Amsterdam
University of Amsterdam 1l.lang@uva.nl m.weiler.ml@gmail.com

gcesalqgti.qualcomm.com

equivariant CNNs / MLPs for ...
...any groups G=0(d) (d=1,2,3) O https://github.com/QUVA-Lab/e2cnn
. . https://github.com/QUVA-Lab/escnn
... arbitrary field types p

native PyTorch: conv = nn.conv3d(in_channels=3, out_channels=16, kernel_size=5)

escnn:
_act = gspaces.cylindricalOnR3(N=16)
fix G and G-action on,HQd feat_type_in = nn.FieldType(R3_act, 4*[R3_act.trivial repr] +
8*[R3_act.irrep(1,1)] -
specify field types 16*[R3_act.regular_repr] )

feat_type_out = nn.FieldType(R3_act, 3*[R3_act.regular_repr] )

construct Aff(G)-convolution _ _
conv = nn.R3Conv(feat_type_in, feat_type_out, kernel _size=5)



https://github.com/QUVA-Lab/e2cnn

Emperical results - image classification

—— vanilla CNN
—— (Cy-steerable
—— (C4-steerable
—— (Cg-steerable
—— (Cy4-steerable

0.14

validation loss

—_—

model CIFAR-10 CIFAR-100 STL-10
test error (%) test error (%) test error (%)
CNN baseline 2.6 £0.1 17.1+0.3 12.74 +0.23
E(2)-CNN 2.05+0.03 14.30 + 0.09 9.80 £+ 0.40

0 1000 2000 3000 4000
training iterations



Emperical results - reinforcement learning

On-Robot Learning With Equivariant Models

Dian Wang Mingxi Jia Xupeng Zhu Robin Walters Robert Platt
Khoury College of Computer Sciences
Northeastern University
Boston, MA 02115, USA

Block Picking Clutter Grasping Block Pushing Block in Bowl
1.0
T
e
® 08
§
= 0.6
£
5 0.4
<]
(5]
0 02
a
0.0 —_— '
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 1000 2000 3000 4000
D equivariant . equivariant D non-equivariant

(simulation pre-trained) (on-robot) (on-robot)



Emperical results - electrodynamics (relativistic)

EM field, induced by moving source charges

simulate next time steps given previous time steps

— C(lifford-steerable ResNet (Ours)
— DBasic ResNet

100
60
)
= 40
[@p)
=
20

Training Step

% No. Simulations

-~ 512 & 2048 % 8192
-H- 1024 -+ 4096
3 'i'\‘«- " ®
N v wﬂ*; \“‘u‘ ) "
‘M oy ‘\u',:»‘f‘g‘w‘. R .»VA &
VX
M 1l R2 ©
axwe s
25000 50000 75000

>2x lower MSE



Convolutions on homogeneous spaces & manifolds

[ Ll L] T[]
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e flip



Feature fields on non-Euclidean spaces

Euclidean homogeneous general surface
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Taco S. Cohen', Mario Geiger?, and Maurice Weiler?
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Intertwiners between Induced Representations

with Applications to the Theory of Equivariant Neural Networks

Homogeneous spaces

Taco S. Cohen', Mario Geiger?, and Maurice Weiler?

idea: equivariance = weight sharing (convolution)
this works for any homogeneous space (space with transitive group action)

kernels need to be steerable w.r.t. stabilizer subgroup

space cylinder R R¢ S2
symmetry (R,4+)xS0O(2) (R%,+) Aff(G) SO(3)
stabilizer {e} {e} G SO(2)

subgroup



Riemannian manifolds - convolutions via isometry equivariance?

idea:  equivariance = weight sharing (convolution)
Riemannian manifolds are in general asymmetric (no transitive actions)

= weight sharing only over symmeiry orbits

trivial orbits



Riemannian manifolds - convolutions via spatial weight sharing”?

idea: despite lack of symmetries, apply kernel at each point
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idea: despite lack of symmetries, apply kernel at each point l
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Riemannian manifolds - convolutions via spatial weight sharing”?

idea: despite lack of symmetries, apply kernel at each point

issue:  ambiguous kernel alignments  <—  ambiguity of reference frames :=ll>

solution: G-steerable kernels

GAUGE FREEDOM !

alignment A alignment B
N

reflection




Gauge theory ?

“objects” often have no canonical numerical representation
gauge = arbitrary choice of such (“measurement units”)

gauge theories ensure consistent predictions among gauges
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Gauge theory ?

“objects” often have no canonical numerical representation

gauge = arbitrary choice of such

(“measurement units”)

gauge theories ensure consistent predictions among gauges

example

gauge fixing

(62, & Bn)
(7B

gauge transformation

physical mass
potential energy

set

weighing unit
reference potential

ordering

unit conversion
potential offset

permutation



Gauge theory ?

T

“objects” often have no canonical numerical representation

I N
i
gauge = arbitrary choice of such (“measurement units”)
gauge theories ensure consistent predictions among gauges
example gauge fixing gauge transformation
physical mass weighing unit unit conversion
potential energy reference potential potential offset
set ordering permutation

space / manifold coordinate chart chart transition map
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Reference frames & coordinate independence

tangent vectors v € T, M are coordinate free

in gauge A, v is expressed by numerical coefficients v e RY .
different numbers,

. . , . same information content !
in gauge B, v is expressed by numerical coefficients vB e R?

gauge trafos ¢4 €|GL(d)| relate coefficients: vB = gBApA

can often reduce to subgroup G < GL(d)

similar for feature vectors f4, f% € R¢: B = p(gBA)fA (“associated G-bundles”)



Gauge freedom? <«— G-structures!

ambiguity of frames on a manifold depends on its G-structure

structure on M

distinguished frames

structure group G < GL(d)

smooth structure only
orientation of M
volume form
Riemannian metric

pseudo-Riemannian metric

all reference frames
positively oriented frames
unit volume frames
orthonormal frames

pseudo-orthonormal frames

GL(d)
GL*(d)
SL(d)
O(d)
O(1,d — 1)
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smooth structure only
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volume form
Riemannian metric

pseudo-Riemannian metric

all reference frames
positively oriented frames
unit volume frames
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pseudo-orthonormal frames
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ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold’s topology

SO(2)-structure reflection group structure

(frames unigque up to rotation) (frames unique up to reflections)



Gauge freedom? <«— G-structures!

ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold’s topology
singularity,
non-continuous NN behavior!

—
a

o

SO(2)-structure {e}-structure

(frames unigque up to rotation) (unique frames)



Coordinate independent convolutions

manifold with G-structure
Theorem: . , _ —>  Kkernels need to be G-steerable
remain coordinate independent

SO(2)-structure reflection group structure



Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure  (“principal bundle automorphisms”)

SO(3)-equivariant SO(2)-equivariant



Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure  (“principal bundle automorphisms”)

recovers Aff(G)-equivariant CNNs on Euclidean spaces

L ¢ S ¢ Sk L L
. A H ¢ K I s s
L L. S ¥ ¢ 3¢ L L

G = {e} G = reflections G = S0(2) G = scaling



Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure  (“principal bundle automorphisms”)

recovers Aff(G)-equivariant CNNs on Euclidean spaces & more exotic moels!

polar log-polar polar + reflections



Euclidean steerable CNNs

punctured Euclidean

>

general
2d surfaces /
meshes

X¥¥% rrr
X%% rrr
%% rrr

manifold structure group global symmetry representation citation
M G Affgar or Isomanr p
r Eq {e} Ta trivial [130[253] + any conventional CNN
I ) . . ’ B S Tix8 regular
3 R Tax R regular 234
el ] . irreps
L | . it
SO(2) SE(2)
6 quotients
regular%trivial
8 regularm—mweclor
G Eq wivial
10 irreps
1 regular
12 0@ E(@2) quotients
13 regularm)trivial
14 induced SO(2)-irreps
15 regular
§ T2xS pool . .
16 regular—trivial
17 irreps
18 quaternion
19 80@3) SE(3) regular
20 regular%trivial
21 regular
Es 0(3) E(3) quotient O(3)/ O(2)
2 irrep s trivial
24 Cy T3 x Cy regular
25 Dy T3 x Dy regular
X d»‘}; D Ea-1,1 SO(d-1,1) Ta x SO(d-1,1)  irreps
o [' TR0 (e} SOR) T ivial
SRS — % S0(2) x § "
\;:"‘Q'ﬁ'ﬁgi"%d‘vﬂ 29 Es\{0} 0(2) 0O(3) trivial
AL 30 s {e} {e} trivial
31 irreps
S? S0 5063 regular
0(2) 0O(3) trivial
52\ poles {e} SO(2) trivial
35 icosahedron Ce I(~S0O(3)) regular
36 ico '\ poles {e} Cs (=~ SO(2)) trivial
7 irreps
surface (d=2) S0(2) Isom (M) regular -
i) régfllar—)trlv1al
Da Isomp s trivial 98]
{e} Isom s trivial [1601[1941[1061[2211[133]
Mébius strip R SO(2) 1Treps Seclion

regular
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f)

Physics «——— Deep Learning

tensor fields

Minkowski space + global Poincaré symmetry

curved spacetime + local Lorentz trafos

invariant laws of nature (relativity)

equivariant system dynamics

scalar / vector / tensor operators in QM

quantum state transition rules

feature fields

Euclidean space + global Aff(G) symmetry

Riemannian manifold + local gauge trafos

invariant neural connectivity

equivariant inference

G-steerable kernels

feature transition rules



geometric structure
(group/representation theory & differential geometry)

Physics J—» Deep Learning

tensor fields

Minkowski space + global Poincaré symmetry

curved spacetime + local Lorentz trafos

invariant laws of nature (relativity)

equivariant system dynamics

scalar / vector / tensor operators in QM

quantum state transition rules

feature fields

Euclidean space + global Aff(G) symmetry

Riemannian manifold + local gauge trafos

invariant neural connectivity

equivariant inference

G-steerable kernels

feature transition rules



(Lattice) gauge field theory - physics vs. ML

nodes: ML: feature vectors, associated to TM

physics: fermions, internal quantum space

=N

l—>pgx )




(Lattice) gauge field theory - physics vs. ML

nodes: ML: feature vectors, associated to TM

physics: fermions, internal quantum space

f(@) = p(gz)f(x)
=
\ [ZNN
y /7 / | RO
edges: ML: parallel transporters <« given by geometry
physics: gauge bosons < dynamical variables

Uu(z) = gorp Up(z) gw_l



Thank you!

Maurice Weiler
Jaakkola lab
MIT CSAIL

X @maurice_weiler

B B Massachusetts
I I Institute of
Technology

él UNIVERSITY
@l OF AMSTERDAM

EQUIVARIANT AND
COORDINATE INDEPENDENT
CONVOLUTIONAL NETWORKS

A GAUGE FiELD THEORY OF NEURAL

NETWORKS

Maurice Weiler
Patrick Forre
Erik Verlinde
Max Welling

Patrick Forré

Erik Verlinde

Max Welling

https://maurice-weiler.gitlab.io/#cnn_book
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