Equivariant & Coordinate Independent Convolutional Neural Networks

Maurice Weiler Jaakkola lab MIT CSAIL

X @maurice_weiler

non-equivariant models explicitly need to learn any transformed sample

non-equivariant models explicitly need to learn any transformed sample

my research: generalize equivariant CNNs to larger symmetry group: more general manifold

.. gauge symmetries

my research: generalize equivariant CNNs to larger symmetry groups

... more general manifolds

.. gauge symmetries

my research: generalize equivariant CNNs to larger symmetry groups

... more general manifolds

. gauge symmetries

my research: generalize equivariant CNNs to larger symmetry groups

... more general manifolds

... gauge symmetries

how? \rightarrow equivariant / steerable kernels

my research: generalize equivariant CNNs to larger symmetry groups

... more general manifolds

... gauge symmetries

Outline

Equivariant Neural Networks & Weight Sharing Patterns

Euclidean CNNs - Translation Equivariance

Euclidean CNNs - Affine Group Equivariance

G-steerable Kernels

Manifolds & Gauge Symmetries

Multilayer perceptrons & symmetries

MLPs are universal function approximators $f: \mathbb{R}^N o \mathbb{R}^M$

Multilayer perceptrons & symmetries

Images are high dimensional vectors ---- can be processed by MLPs

MLPs don't generalize over geometric transformations

equivariance!

Multilayer perceptrons & symmetries

Images are high dimensional vectors ---- can be processed by MLPs

MLPs don't generalize over geometric transformations

consider curve fitting via polynomial lineaer regression: $f(x) := \sum_n w_n x^n$

suppose the ground truth is known to be symmetric: f(-x) = f(x)

this prior knowledge is incorporated by constraining the model to f(x)

$$f(x) := \sum_{n \text{ even}} w_n x^n$$

takeaway: equivariance — constraint on model parameters ("weight sharing patterns")

consider curve fitting via polynomial lineaer regression: $f(x) := \sum_{n} w_n x^n$

suppose the ground truth is known to be symmetric: f(-x) = f(x)

this prior knowledge is incorporated by constraining the model to $f(x) := \sum_{n \text{ even}} w_n x^n$

takeaway: equivariance — constraint on model parameters ("weight sharing patterns")

consider curve fitting via polynomial lineaer regression: $f(x) := \sum_{n} w_n x^n$

suppose the ground truth is known to be symmetric: f(-x) = f(x)

this prior knowledge is incorporated by constraining the model to f(z)

 $f(x) := \sum_{n \text{ even}} w_n \, x^n$

takeaway: equivariance — constraint on model parameters ("weight sharing patterns"

consider curve fitting via polynomial lineaer regression: $f(x) := \sum_{n} w_n x^n$

suppose the ground truth is known to be antisymmetric: f(-x) = -f(x)

this prior knowledge is incorporated by constraining the model to

 $f(x) := \sum_{n \text{ odd}} w_n x^n$

takeaway: equivariance — constraint on model parameters ("weight sharing patterns"

consider curve fitting via polynomial lineaer regression: $f(x) := \sum_{n} w_n x^n$

suppose the ground truth is known to be antisymmetric: f(-x) = -f(x)

this prior knowledge is incorporated by constraining the model to f

takeaway: equivariance ---- constraint on model parameters ("weight sharing patterns")

$$f(x) := \sum_{n \text{ odd}} w_n x^n$$

a neural network is a sequence of layers (feed forward NN)

common approach: sequence of individually equivariant layers

step 1: specify feature spaces and group actions

an equivariant neural network is an equivariant sequence of layers

common approach: sequence of individually equivariant layers

step 1: specify feature spaces and group actions

an <u>equivariant</u> neural network is an <u>equivariant</u> sequence of layers

common approach: layer-wise equivariance

step 1: specify feature spaces and group actions

an <u>equivariant</u> neural network is an <u>equivariant</u> sequence of layers

common approach: layer-wise equivariance

step 1: specify feature spaces and group actions

an <u>equivariant</u> neural network is an <u>equivariant</u> sequence of layers

common approach: layer-wise equivariance

step 1: specify feature spaces and group actions

Equivariant linear layers ("intertwiners")

consider a linar layer / matrix multiplication $\mathbb{R}^n \to \mathbb{R}^m, x \mapsto Wx$

equivariance w.r.t. representations ρ_{in} on \mathbb{R}^n and ρ_{out} on \mathbb{R}^m means:

$$W\rho_{\rm in}(g) = \rho_{\rm out}(g)W \qquad \iff \qquad \left[\rho_{\rm in}^{-\dagger} \otimes \rho_{\rm out}\right](g)\operatorname{vec}(W) = \operatorname{vec}(W)$$

equivariant matrices are themselves invariants / symmetric ---- characterized by "weight sharing patterns":

Alternative approaches - data augmentation

apply random transformations to training data + targets

downside: less robust, converges slowly, worse final performance

Alternative approaches - group averaging

symmetrize model by applying it to any transformed inputs & aggregating outputs

downside: expensive for large groups

Alternative approaches - group averaging

transform input to canonical pose before applying model

downside: non-robust,

continuous canonicalization (choice of orbit representative) topologically impossible

Translation equivariant Euclidean CNNs

convolution for edge detection

learned filter bank

convolution for edge detection

learned filter bank

recall:

step 1: specify feature spaces and group actions - feature maps

step 2: find equivariant maps

convolutions / bias summation / ...

continuous feature maps are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ assigning features $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$

spatial / pixel dimensions / feature channels *discretized* feature maps on \mathbb{R}^d are arrays of shape (X_1, \ldots, X_d, C)

continuous feature maps are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ assigning features $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$

feature maps carry a translation group action $[t \triangleright f](x) := f(x - t)$

spatial / pixel dimensions / feature channels *discretized* feature maps on \mathbb{R}^d are arrays of shape (X_1, \ldots, X_d, C)

continuous feature maps are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ assigning features $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$

feature maps carry a translation group action $[t \triangleright f](x) := f(x - t)$

this definition includes *point clouds*: $f(x) = \sum_{n} f_n \, \delta(x - x_n)$

conventional CNN layer := any translation equivariant function between feature maps

conventional CNN layer := any translation equivariant function between feature maps

conventional CNN layer := any translation equivariant function between feature maps

conventional CNN layer := any translation equivariant function between feature maps

conventional CNN layer := any translation equivariant function between feature maps

conventional CNN layer := any translation equivariant function between feature maps

Affine group equivariant Euclidean CNNs

Symmetries of Euclidean space - translations

translations $(\mathbb{R}^d,+)$

Symmetries of Euclidean space - isometries

Symmetries of Euclidean space - affine

feature vector fields are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ (like feature maps)

... carry an Aff(G)-action (details depend on *field type* ρ)

examples: scalar fields $s : \mathbb{R}^d \to \mathbb{R}^1$ transform like: $[(tg) \triangleright s](x) = s((tg)^{-1}x)$ tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \triangleright v](x) = g \cdot v((tg)^{-1}x)$

feature vector fields are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ (like feature maps)

... carry an Aff(G)-action (details depend on *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^d \to \mathbb{R}^1$$
 transform like: $[(tg) \rhd s](x) = s((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \rhd v](x) = g \cdot v((tg)^{-1}x)$

feature vector fields are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ (like feature maps)

... carry an Aff(G)-action (details depend on *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^{d} \to \mathbb{R}^{1}$$
 transform like: $[(tg) \triangleright s](x) = 1 \cdot s ((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^{d} \to \mathbb{R}^{d}$ transform like: $[(tg) \triangleright v](x) = g \cdot v ((tg)^{-1}x)$
Aff(G) acts here by... 1) moving feature vectors on \mathbb{R}^{d}

feature vector fields are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ (like feature maps)

... carry an Aff(G)-action (details depend on *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^{d} \to \mathbb{R}^{1}$$
 transform like: $[(tg) \triangleright s](x) = \begin{bmatrix} 1 \cdot s & (tg)^{-1}x \\ g \cdot v & (tg)^{-1}x \end{bmatrix}$
tangent vector fields $v : \mathbb{R}^{d} \to \mathbb{R}^{d}$ transform like: $[(tg) \triangleright v](x) = \begin{bmatrix} g \cdot v & (tg)^{-1}x \\ g \cdot v & (tg)^{-1}x \end{bmatrix}$
 ρ -feature fields $f : \mathbb{R}^{d} \to \mathbb{R}^{c}$ transform like: $[(tg) \triangleright f](x) = \rho(g)f((tg)^{-1}x)$
G-representation
Aff(G) acts here by... 1) moving feature vectors on \mathbb{R}^{d}

Feature fields - examples

fluid flow

(vector)

 $\rho(g)=g$

EM field strength (bivector / anti-symm. (0,2)-tensor) (subspace of) $ho(g) = g^{- op} \otimes g^{- op}$

diffusion tensor image (symm. pos. def. (1,1)-tensor) (subspace of) $ho(g) = g \otimes g^{-\top}$

Affine group equivariant CNN layers

steerable CNN layer := any Aff(G)-equivariant function between feature fields

Affine group equivariant CNN layers

steerable CNN layer := any Aff(G)-equivariant function between feature fields

	space	$\begin{array}{c} \text{matrix group} \\ G \end{array}$	global symmetry $\operatorname{Aff}(G)$	representation ρ	citation
1	\mathbb{R}^{d}	$\{e\}$	$(\mathbb{R}^d, +)$	trivial	conventional CNNs [175, 348]
2		scaling S	$(\mathbb{R}^1, +) \rtimes S$	regular	[248]
3	\mathbb{R}^{1}		(1)	regular	[193]
4		reflection \mathcal{R}	$(\mathbb{R}^{1},+)\rtimes \mathcal{R}$	irreps	[193]
5		reflection $\mathcal R$	$(\mathbb{R}^2,+) times\mathscr{R}$	regular	[322]
6				irreps	[335, 322]
7		SO(2)	SE(2)	regular	[71, 52, 358, 53, 324, 12, 125, 258, 275, 27, 70, 76 [322, 110, 170, 279, 317, 247, 215, 276, 277, 37, 23 [270, 10, 91, 306, 113, 216, 311, 122, 223, 43, 116]
8				quotients	[53, 322]
9				regular ^{pool}→ trivial	[52, 195, 322]
10	- 2			regular $\xrightarrow{\text{pool}}$ vector	[196, 322]
11	\mathbb{R}^2			trivial	[144, 322]
12				irreps	[322]
13		O(2)	$\mathbf{F}(2)$	regular	[71, 52, 125, 53, 322] [216, 110, 270, 23]
14		O(2)	E(2)	quotients	[53]
15				regular trivial	[322]
16				induced $SO(2)$ -irr	eps [322]
17		1: 0	(2)	regular	[334, 281, 10, 359]
18		scaling 3	$(\mathbb{R}^2,+) \rtimes S^2$	regular mool trivial	[107]
19		$SO(2) \times S$	$(\mathbb{R}^2, +) \rtimes (\mathrm{SO}(2) \times \mathcal{S})$	regular	[349]
20				irreps	[323, 301, 211, 161, 3, 184]
21		G Q (2)		quaternion	[345]
22		SO(3)	SE(3)	regular	[91, 329, 333]
23				regular ^{pool}→ trivial	[4]
24	m3	-		irreps	[8]
25	11%	O(2)	$\mathbf{F}(2)$	regular	[329]
26		O(3)	E(3)	quotient $O(3)/O($	[136]
27				irrep morm trivial	[233]
28		C_4	$(\mathbb{R}^3,+) times \mathrm{C}_4$	regular	[289]
29		D_4	$(\mathbb{R}^3,+) ightarrow \mathrm{D}_4$	regular	[289]
30	Minkowski	SO(d-1, 1)	$(\mathbb{R}^d, +) \rtimes \mathrm{SO}(d-1, 1)$	irreps	[274]

taxonomy of equivariant CNNs

G-steerable kernels

G-steerable kernels - intuition

convolution kernels summarize their field of view around $x \in \mathbb{R}^d$ into a feature vector $f(x) \in \mathbb{R}^{c_{out}}$

G-steerable kernels guarantee: G-trafo of their input field of view \Rightarrow G-trafo of the output feature vector

G-steerable kernels - intuition

convolution kernels summarize their field of view around $x \in \mathbb{R}^d$ into a feature vector $f(x) \in \mathbb{R}^{c_{out}}$

G-steerable kernels guarantee: G-trafo of their input field of view \Rightarrow G-trafo of the output feature vector

G-steerable kernels - intuition

convolution kernels summarize their field of view around $x \in \mathbb{R}^d$ into a feature vector $f(x) \in \mathbb{R}^{c_{out}}$

G-steerable kernels guarantee: G-trafo of their input field of view \Rightarrow G-trafo of the output feature vector

convolutions with G-steerable kernels are Aff(G)-equivariant

G-steerable kernels - mathematical definition

G-steerable kernels satisfy a linear G-equivariance constraint:

$$K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \qquad \forall \ g \in G, \ x \in \mathbb{R}^d$$

G-action on spatial dimension —

G-action on matrix rows / columns

G-steerable kernels - mathematical definition

G-steerable kernels satisfy a linear G-equivariance constraint:

$$K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \qquad \forall \ g \in G, \ x \in \mathbb{R}^d$$

G-action on spatial dimension —

G-action on matrix rows / columns

G-steerable kernels - mathematical definition

G-steerable kernels satisfy a linear G-equivariance constraint:

$$K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall \ g \in G, \ x \in \mathbb{R}^d$$

G-action on spatial dimension ______ G-action on matrix rows / columns

G-steerable kernel bases

convolution kernels $K: \mathbb{R}^d \longrightarrow \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ form a *vector space*

the G-steerability constraint is *linear*

 \implies steerable kernels form a vector subspace

... can be expanded from a steerable basis set

(params = expansion weights)

$$K(x) = w_0 \cdot \left(\begin{array}{c} & & \\ &$$

reflection group: $\mathbb{Z}_2 = \{e, r\}$ with $r^2 = e$ or $r^{-1} = r$

the general G-steerability constraint

$$K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \qquad \forall \ g \in G, \ x \in \mathbb{R}^d$$

simplifies to:

$$K(rx) = \rho_{\text{out}}(r)K(x)\rho_{\text{in}}(r) \qquad \forall x \in \mathbb{R}^d$$

field type $ ho$	ho(e)	$ ho(\mathrm{reflect})$	original field	reflected field
trivial / scalar	(1)	(1)		
sign-flip / pseudo-scalar	(1)	(-1)		
regular	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		

Full derivation of these examples in (Weiler et al. 2023, Equivariant and Coordinate Independent Convolutional Networks, Section 5.2)

rotational symmetry constraint \implies affects only *angular* part, *radial* part unconstrained

Full derivation for SO(3) in (Lang & Weiler 2021, A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5) (the

STEERABLE PARTIAL DIFFERENTIAL OPERATORS FOR EQUIVARIANT NEURAL NETWORKS

Erik Jenner* **Maurice Weiler** University of Amsterdam University of Amsterdam erik@ejenner.com m.weiler.ml@gmail.com rotational symmetry constraint affects only angu \implies Laplace grad scalar field vector field Laplace curl grad o div div

Full derivation for SO(3) in (Lang & Weiler 2021, A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels, Appendix E.5)

Lorentz group steerable kernels

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov¹ David Ruhe^{*123} Maurice Weiler^{*1} Ana Lucic⁴ Johannes Brandstetter⁵⁶ Patrick Forré¹²

Euclidean space
$$\mathbb{R}^2$$
, metric $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Minkowski spacetime $\mathbb{R}^{1,1}$, metric $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Lorentz group steerable kernels

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov¹ David Ruhe^{*123} Maurice Weiler^{*1} Ana Lucic⁴ Johannes Brandstetter⁵⁶ Patrick Forré¹²

Minkowski $\mathbb{R}^{1,1}$

Lorentz group steerable kernels

Clifford-Steerable Convolutional Neural Networks

Maksim Zhdanov¹ David Ruhe^{*123} Maurice Weiler^{*1}

operators \widehat{A} acting on states $\left|\psi\right\rangle$

symmetries \Rightarrow representation operator constraint $\sum_j g_{ij} \widehat{A}_j \,=\, \widehat{U}(g)^\dagger\, \widehat{A}_i\, \widehat{U}(g)$ (e.g. vector ope

selection rules for quantum state transitions

Deep Learning

kernels K acting on features f(x)

symmetries \Rightarrow steerable kernel constraint $K(g^{-1}x) =
ho_{
m out}(g)^{\dagger} K(x)
ho_{
m in}(g)$

operators \widehat{A} acting on states $\left|\psi\right\rangle$

symmetries \Rightarrow representation operator constraint

 $\sum_j g_{ij} \widehat{A}_j \,=\, \widehat{U}(g)^\dagger \, \widehat{A}_i \, \widehat{U}(g)$ (e.g. vector operator)

selection rules for quantum state transitions

Deep Learning

kernels K acting on features f(x)

symmetries \Rightarrow steerable kernel constraint $K(g^{-1}x) = \rho_{\text{out}}(g)^{\dagger} K(x) \rho_{\text{in}}(g)$

operators \widehat{A} acting on states $|\psi
angle$

symmetries \Rightarrow representation operator constraint

 $\sum_j g_{ij} \widehat{A}_j \,=\, \widehat{U}(g)^\dagger \, \widehat{A}_i \, \widehat{U}(g)$ (e.g. vector operator)

selection rules for quantum state transitions

Deep Learning

kernels K acting on features f(x)

symmetries \Rightarrow steerable kernel constraint $K(g^{-1}x) = \rho_{\text{out}}(g)^{\dagger} K(x) \rho_{\text{in}}(g)$

operators \widehat{A} acting on states $|\psi
angle$

symmetries \Rightarrow representation operator constraint

 $\sum_j g_{ij} \widehat{A}_j \ = \ \widehat{U}(g)^\dagger \ \widehat{A}_i \ \widehat{U}(g)$ (e.g. vector operator)

non-zero

matrix elements!

selection rules for quantum state transitions

Deep Learning

kernels K acting on features f(x)

symmetries \Rightarrow steerable kernel constraint

 $K(g^{-1}x) = \rho_{\text{out}}(g)^{\dagger} K(x) \rho_{\text{in}}(g)$

operators / kernels are fully described by their matrix elements:

$$\langle \mu | \widehat{A} |
u
angle$$
 or $K_{\mu
u}(x)$

symmetries couple matrix elements $\;\;\Rightarrow\;\;$ reduced *degrees of freedom / parameters*

Clebsch-Gordan coeffs. (fixed)

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators) :

$$\langle JM | \hat{A}_{m}^{(j)} | ln \rangle = \lambda^{(Jlj)} \langle JM | jm; ln \rangle$$

"reduced matrix element" (single d.o.f. instead of (2J+1)(2l+1)(2j+1)

generalized Wigner-Eckart theorem for G-steerable kernels :

 $K_{Mn}^{(J \leftarrow l)}(x) := \langle JM | K(x) | ln \rangle = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{d_j} \sum_{M'=1}^{d_J} \langle JM | c_{jis} | JM' \rangle \cdot \langle s, JM' | jm; ln \rangle \cdot \langle i, jm | x \rangle$ kernel irrep irrep Clebsch-Gordan harmonics coefficients (Peter Weyl)

operators / kernels are fully described by their *matrix elements*:

$$\langle \mu | \widehat{A} |
u
angle$$
 or $K_{\mu
u}(x)$

Clebsch-Gordan coeffs. (fixed)

symmetries couple matrix elements \Rightarrow reduced *degrees of freedom / parameters*

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators) :

$$\left\langle JM \right| \widehat{A}_{m}^{(j)} \left| ln \right\rangle = \lambda^{(Jlj)} \left\langle JM \right| jm; ln \right\rangle$$

"reduced matrix element" (single d.o.f. instead of (2J+1)(2l+1)(2j+1))

generalized Wigner-Eckart theorem for G-steerable kernels :

$$K_{Mn}^{(J \leftarrow l)}(x) := \langle JM | K(x) | ln \rangle = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{d_j} \sum_{M'=1}^{d_j} \langle JM | c_{jis} | JM' \rangle \cdot \langle s, JM' | jm; ln \rangle \cdot \langle i, jm | x \rangle$$

$$kernel$$

$$irrep$$

$$irrep$$

$$Clebsch-Gordan$$

$$harmonics$$

$$endomorphisms$$

$$coefficients$$

$$(Peter Wey)$$

operators / kernels are fully described by their *matrix elements*:

$$\langle \mu | \widehat{A} |
u
angle$$
 or $K_{\mu
u}(x)$

Clebsch-Gordan coeffs. (fixed)

symmetries couple matrix elements \Rightarrow reduced *degrees of freedom / parameters*

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators):

$$\left\langle JM \right| \widehat{A}_{m}^{(j)} \left| ln \right\rangle = \lambda^{(Jlj)} \left\langle JM \right| jm; ln \right\rangle$$

"reduced matrix element" (single d.o.f. instead of (2J+1)(2l+1)(2j+1))

generalized Wigner-Eckart theorem for G-steerable kernels :

$$K_{Mn}^{(J \leftarrow l)}(x) := \langle JM | K(x) | ln \rangle = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{d_j} \sum_{M'=1}^{d_j} \langle JM | c_{jis} | JM' \rangle \cdot \langle s, JM' | jm; ln \rangle \cdot \langle i, jm | x \rangle$$

$$\underbrace{kernel}_{matrix \ elements} \qquad \underbrace{kernel}_{endomorphisms} \underbrace{Clebsch-Gordan}_{coefficients} \underbrace{harmonics}_{(Peter \ Weyl)}$$

operators / kernels are fully described by their *matrix elements*:

$$\langle \mu | \widehat{A} |
u
angle$$
 or $K_{\mu
u}(x)$

Clebsch-Gordan coeffs. (fixed)

symmetries couple matrix elements \Rightarrow reduced *degrees of freedom / parameters*

Wigner-Eckart theorem (G=SO(3) / spherical tensor operators):

$$JM \left| \hat{A}_{m}^{(j)} \left| ln \right\rangle = \lambda^{(Jlj)} \left\langle JM \left| jm; ln \right\rangle \right\rangle$$

"reduced matrix element" (single d.o.f. instead of (2J+1)(2l+1)(2j+1))

/

generalized Wigner-Eckart theorem for G-steerable kernels : \leftarrow assuming *compact* $G \leq U(d)$

$$K_{Mn}^{(J \leftarrow l)}(x) := \langle JM | K(x) | ln \rangle = \sum_{j \in \widehat{G}} \sum_{i=1}^{m_j} \sum_{s=1}^{[J(jl)]} \sum_{m=1}^{d_j} \sum_{M'=1}^{d_J} \langle JM | c_{jis} | JM' \rangle \cdot \langle s, JM' | jm; ln \rangle \cdot \langle i, jm | x \rangle$$

$$kernel$$

$$matrix elements$$

$$kernel$$

Implicit steerable kernels

convolution kernels are functions $K: \mathbb{R}^d \longrightarrow \mathbb{R}^{c_{\mathrm{out}} \times c_{\mathrm{in}}}$

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

Implicit steerable kernels

convolution kernels are functions $K: \mathbb{R}^d \longrightarrow \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

\mathbb{R}^{d}	G-equivariant	$\mathbb{R}^{c_{ ext{out}} imes c_{ ext{in}}}$
g Č	implicit kernel MLP	$\sum \frac{\rho_{\rm in}^{-\top} \otimes \rho_{\rm out}}{ \det }(g)$

nal Neural Netw

Implicit steerable kernels

convolution kernels are functions $K: \mathbb{R}^d \longrightarrow \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

advantage: can additionally be made input feature dependent

Maksim Zhdanov* Nico Hoffmann Gabriele Ces			
	Maksim Zhdanov*	Nico Hoffmann	Gabriele Cesa
lifford-Steerable Convolutional Neural Netw	lifford-Steerab	le Convolution:	al Neural Netwo
Clifford-Steerable Convolutional Neural Netw	Clifford-Steerab	le Convolutiona	al Neural Networ
Clifford-Steerable Convolutional Neural Netw	Clifford-Steerab	le Convolutiona	al Neural Networ

output: kernel values

escnn PyTorch library

equivariant CNNs / MLPs for ...

... any groups $G \le O(d)$ (d=1,2,3)

... arbitrary field types ho

A PROGRAM TO BUILD E(n)-Equivariant Steerable CNNs

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com Leon Lang University of Amsterdam l.lang@uva.nl Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

https://github.com/QUVA-Lab/e2cnn https://github.com/QUVA-Lab/escnn

native PyTorch:

conv = nn.Conv3d(in_channels=3, out_channels=16, kernel_size=5)

escnn:

fix G and G-action on \mathbb{R}^d specify field types <construct $\operatorname{Aff}(G)$ -convolution < <u>R3_act = gspaces.cylindricalOnR3(N=16)</u>

feat_type_in = nn.FieldType(R3_act, 4*[R3_act.trivial_repr] +

```
8*[<mark>R3_act.irrep(1,1)] +</mark>
```

```
16*[R3_act.regular_repr] )
```

```
`feat_type_out = nn.FieldType(R3_act, 3*[R3_act.regular_repr] )
```

> conv = nn.R3Conv(feat_type_in, feat_type_out, kernel_size=5)

Emperical results - image classification

model	CIFAR-10 test error (%)	CIFAR-100 test error (%)	STL-10 test error (%)
CNN baseline	2.6 ± 0.1	17.1 ± 0.3	12.74 ± 0.23
E(2)-CNN	2.05 ± 0.03	14.30 ± 0.09	9.80 ± 0.40

Emperical results - reinforcement learning

On-Robot Learning With Equivariant Models

Dian Wang Mingxi Jia Xupeng Zhu Robin Walters Robert Platt Khoury College of Computer Sciences Northeastern University Boston, MA 02115, USA

Emperical results - electrodynamics (relativistic)

EM field, induced by moving source charges

simulate next time steps given previous time steps

Convolutions on homogeneous spaces & manifolds

Feature fields on non-Euclidean spaces

Euclidean

homogeneous

general surface

space

symmetry

Intertwiners between Induced Representations with Applications to the Theory of Equivariant Neural Networks

Taco S. Cohen¹, Mario Geiger², and Maurice Weiler³

idea: equivariance \implies weight sharing (convolution)

this works for any *homogeneous space* (space with transitive group action)

	\mathbb{R}^{d}		
$(\mathbb{R},+) \times \mathrm{SO}(2)$	$(\mathbb{R}^d,+)$	$\operatorname{Aff}(G)$	

· ·				
stabilizer	$\{e\}$	$\{e\}$	G	

Intertwiners between Induced Representations with Applications to the Theory of Equivariant Neural Networks

Taco S. Cohen¹, Mario Geiger², and Maurice Weiler³

idea: equivariance \implies weight sharing (convolution)

this works for any *homogeneous space* (space with transitive group action)

Intertwiners between Induced Representations with Applications to the Theory of Equivariant Neural Networks

Taco S. Cohen¹, Mario Geiger², and Maurice Weiler³

idea: equivariance \implies weight sharing (convolution)

this works for any *homogeneous space* (space with transitive group action)

Intertwiners between Induced Representations with Applications to the Theory of Equivariant Neural Networks

Taco S. Cohen¹, Mario Geiger², and Maurice Weiler³

idea: equivariance \implies weight sharing (convolution)

this works for any *homogeneous space* (space with transitive group action)

Riemannian manifolds - convolutions via isometry equivariance?

idea: equivariance \implies weight sharing (convolution)

Riemannian manifolds are in general *asymmetric* (no transitive actions)

 \implies weight sharing only over *symmetry orbits*

SO(2) orbits

trivial orbits

Riemannian manifolds - convolutions via spatial weight sharing?

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments \longleftrightarrow ambiguity of reference frames

solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames

solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames
- solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames
- solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames
- solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames
- solution: G-steerable kernels

- idea: despite lack of symmetries, apply kernel at each point
- issue: ambiguous kernel alignments $\leftrightarrow \rightarrow$ ambiguity of reference frames

GAUGE FREEDOM !

"objects" often have no canonical numerical representation

gauge = *arbitrary* choice of such ("measurement units")

"objects" often have no canonical numerical representation

gauge = *arbitrary* choice of such ("measurement units")

example	gauge fixing	gauge transformation		
physical mass	weighing unit	unit conversion		
potential energy	reference potential	potential offset		
set	ordering	permutation		
space / manifold	coordinate chart	chart transition map		

"objects" often have no canonical numerical representation

gauge = *arbitrary* choice of such ("measurement units")

example	gauge fixing	gauge transformation		
physical mass	weighing unit	unit conversion		
potential energy	reference potential	potential offset		
set	ordering	permutation		
space / manifold	coordinate chart	chart transition map		

"objects" often have no canonical numerical representation

gauge = *arbitrary* choice of such ("measurement units")

gauge theories ensure consistent predictions among gauges

_

example	gauge fixing	gauge transformation		
physical mass	weighing unit	unit conversion		
potential energy	reference potential	potential offset		
set	ordering	permutation		
space / manifold	coordinate chart	chart transition map		

"objects" often have no canonical numerical representation

gauge = *arbitrary* choice of such ("measurement units")

example	gauge fixing	gauge transformation		
physical mass	weighing unit	unit conversion		
potential energy	reference potential	potential offset		
set	ordering	permutation		
space / manifold	coordinate chart	chart transition map		

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$

in gauge B, v is expressed by numerical *coefficients* $v^{D} \in \mathbb{R}$

gauge trafos $g^{BA} \in \operatorname{GL}(d)$ relate coefficients: $v^B = g^{BA} v^A$

different numbers, same information content !

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$

in gauge B, v is expressed by numerical *coefficients* $v^B \in \mathbb{R}^d$

gauge trafos $g^{BA} \in \operatorname{GL}(d)$ relate coefficients: $v^B = g^{BA} v^A$

different numbers, same information content !

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$ in gauge B, v is expressed by numerical *coefficients* $v^B \in \mathbb{R}^d$

gauge trafos $g^{BA} \in GL(d)$ relate coefficients: $v^B = g^{BA}v^A$

different numbers, same information content !

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$ in gauge B, v is expressed by numerical *coefficients* $v^B \in \mathbb{R}^d$

gauge trafos $g^{BA} \in \operatorname{GL}(d)$ relate coefficients: $v^B = g^{BA} v^A$

different numbers, same information content !

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$ in gauge B, v is expressed by numerical *coefficients* $v^B \in \mathbb{R}^d$

gauge trafos $g^{BA} \in \operatorname{GL}(d)$ relate coefficients: $v^B = g^{BA} v^A$

different numbers, same information content !

similar for feature vectors $f^A, f^B \in \mathbb{R}^c$: $f^B = \rho(g^{BA})f^A$ ("associated G-bundles")

tangent vectors $v \in T_pM$ are *coordinate free*

in gauge A, v is expressed by numerical *coefficients* $v^A \in \mathbb{R}^d$

in gauge B, v is expressed by numerical *coefficients* $v^B \in \mathbb{R}^d$

gauge trafos
$$g^{BA} \in \operatorname{GL}(d)$$
 relate coefficients: $v^B = g^{BA} v^A$
can often reduce to subgroup $G < \operatorname{GL}(d)$

different numbers, same information content !

similar for feature vectors $f^A, f^B \in \mathbb{R}^c$: $f^B = \rho(g^{BA})f^A$ ("associated G-bundles")

Gauge freedom? $\leftrightarrow \rightarrow$ G-structures!

ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold's topology

structure on M	distinguished frames	structure group $G \leq \operatorname{GL}(d)$
smooth structure only	all reference frames	$\operatorname{GL}(d)$
orientation of M	positively oriented frames	$\mathrm{GL}^+(d)$
volume form	unit volume frames	$\mathrm{SL}(d)$
Riemannian metric	orthonormal frames	$\mathrm{O}(d)$
pseudo-Riemannian metric	pseudo-orthonormal frames	$\mathrm{O}(1,d-1)$

Gauge freedom? $\leftrightarrow \rightarrow$ G-structures!

ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold's topology

structure on M	distinguished frames	structure group $G \leq \operatorname{GL}(d)$
smooth structure only	all reference frames	$\operatorname{GL}(d)$
orientation of M	positively oriented frames	$\mathrm{GL}^+(d)$
volume form	unit volume frames	$\operatorname{SL}(d)$
Riemannian metric	orthonormal frames	$\mathrm{O}(d)$
pseudo-Riemannian metric	pseudo-orthonormal frames	$\mathrm{O}(1,d-1)$

Gauge freedom? \leftrightarrow G-structures!

ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold's topology

SO(2)-structure (frames unique up to rotation)

reflection group structure (frames unique up to reflections)

Gauge freedom? $\leftrightarrow \rightarrow$ G-structures!

ambiguity of frames on a manifold depends on its G-structure

existence of G-structure may be obstructed by manifold's topology

(frames unique up to rotation)

Coordinate independent convolutions

Theorem:

manifold with G-structure remain coordinate independent

kernels need to be G-steerable

SO(2)-structure

reflection group structure

Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure ("principal bundle automorphisms")

SO(3)-equivariant

SO(2)-equivariant

Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure ("principal bundle automorphisms")

recovers Aff(G)-equivariant CNNs on Euclidean spaces

Global symmetries

Theorem: equivariant w.r.t. symmetries of G-structure ("principal bundle automorphisms")

recovers Aff(G)-equivariant CNNs on Euclidean spaces & more exotic moels!

log-polar

polar + reflections

	ma	anifold	structure group	global symmetry	representation	citation
		M	G	Aff_{GM} or Isom_{GM}	ρ	
	L	\mathbb{E}_d	$\{e\}$	\mathcal{T}_d	trivial	130 253 + any conventional CNN
Euclidean steerable CNNS	2	\mathbb{E}_1	8	$T_1 \rtimes S$	regular	186
3	3		R	$\mathcal{T}_2 \rtimes \mathscr{R}$	regular	234
	1				irreps	
	5		SO(2)	SE(2)	regular	[51] 33] 257 34 236 8 95 192 [234] 79 125 210 232 185 158 [201] 7 67 227 83 159 231 92 [50] 206 19 207 208 164 29 86
	5				quotients	34 234
	7				regular mool →trivial	33 143 234
W W W M M	3				regular	144 234
*** 「「」」「「」」)	\mathbb{E}_2 -			trivial	110 234
)				irreps	234
punctured Euclidean	1		O(2)	E(2)	regular	51 33 93 34 234 159 79 201
	2		0(2)	1(2)	quotients	34
13	3				regular → trivial	234
I I I I I I I I I I I I I I I I I I I	4	_			induced SO(2)-irreps	234
	5		\$	$\mathcal{T}_{a} \rtimes S$	regular	243 212 7 258
	5		0	12 × 0	regular mool trivial	[77]
	7				irreps	235 224 156 120 2 6
	3		SO(2)	SE(2)	quaternion	250
)		30(3)	5E(3)	regular	67 241 242
20)	_			regular	3
21	1				regular	241
spherical / icosabedral	2	\mathbb{E}_3	O(3)	E(3)	quotient $O(3)/O(2)$	103
	3				irrep — trivial	174
24	1	_	C_4	$\mathcal{T}_3 times \mathrm{C}_4$	regular	219
	5		D_4	$\mathcal{T}_3 times \mathrm{D}_4$	regular	219
	5 E	$E_{d-1,1}$	SO(d-1, 1)	$\mathcal{T}_d \rtimes \mathrm{SO}(d-1,1)$	irreps	205
	$\mathbb{E}_2 \setminus$	$\mathbb{E}_2 \setminus \{0\}$ $\{e\}$	$\{e\}$	[e] SO(2)	trivial	30 67
			(~)	$SO(2) \times S$		62 67
	E:	$\{0\}$	O(2)	O(3)	trivial	178
)		$\{e\}$	$\{e\}$	trivial	13
	1	-2 SO(2)	SO(3)	irreps	122,64	
2d surfaces /	2	S* _	0(0)	0(8)	regular	35
33	3		O(2)	U(3)	trivial	[39]222]254]149[105]
mesnes 🖌 🔭 🎇	S^2	\ poles	$\{e\}$	SO(2)	trivial	217 218 55 131
33	5 icos	sahedron	C_6	$I (\approx SO(3))$	regular	38
	ico	o ∖ poles	$\{e\}$	$C_5 \ (\approx SO(2))$	trivial	251 139
37	7				irreps	238
38	³⁸ ³⁹ surface ($d=1$	(d-2)	SO(2)	$\operatorname{Isom}_+(M)$	regular	173 220 246 48
		(a=2) meshes) -	e(a=2)		regular ^{pool} →trivial	150 151 160 220
Möbius Haine I au	(c.g.	- mesnes)	D_4	$\operatorname{Isom}_{\operatorname{D}_4M}$	trivial	98
	L		$\{e\}$	$\operatorname{Isom}_{\{e\}M}$	trivial	160 194 106 221 133
	Möh	bius strip	R	SO(2)	irreps	Section 5
43	3			~~(-)	regular	

tensor fields

feature fields

Minkowski space + global Poincaré symmetry curved spacetime + local Lorentz trafos

> invariant laws of nature (relativity) equivariant system dynamics

scalar / vector / tensor operators in QM quantum state transition rules

Euclidean space + global Aff(G) symmetry Riemannian manifold + local gauge trafos

invariant neural connectivity equivariant inference

tensor fields

feature fields

Minkowski space + global Poincaré symmetry curved spacetime + local Lorentz trafos

> invariant laws of nature (relativity) equivariant system dynamics

scalar / vector / tensor operators in QM quantum state transition rules

Euclidean space + global Aff(G) symmetry Riemannian manifold + local gauge trafos

invariant neural connectivity equivariant inference

tensor fields

feature fields

Minkowski space + global Poincaré symmetry curved spacetime + local Lorentz trafos

> invariant laws of nature (relativity) equivariant system dynamics

scalar / vector / tensor operators in QM quantum state transition rules Euclidean space + global Aff(G) symmetry Riemannian manifold + local gauge trafos

invariant neural connectivity equivariant inference

tensor fields

feature fields

Minkowski space + global Poincaré symmetry curved spacetime + local Lorentz trafos

> invariant laws of nature (relativity) equivariant system dynamics

scalar / vector / tensor operators in QM quantum state transition rules

Euclidean space + global Aff(G) symmetry Riemannian manifold + local gauge trafos

invariant neural connectivity equivariant inference

geometric structure (group/representation theory & differential geometry) Physics Deep Learning

tensor fields

feature fields

Minkowski space + global Poincaré symmetry curved spacetime + local Lorentz trafos

> invariant laws of nature (relativity) equivariant system dynamics

invariant neural connectivity equivariant inference

Euclidean space + global Aff(G) symmetry

Riemannian manifold + local gauge trafos

scalar / vector / tensor operators in QM quantum state transition rules

(Lattice) gauge field theory - physics vs. ML

<u>nodes</u>: ML: feature vectors, associated to TM physics: fermions, internal quantum space

edges: ML: parallel transporters \leftarrow given by geometry physics: gauge bosons \leftarrow dynamical variables $U_{\mu}(x) \mapsto q_{x+\mu} U_{\mu}(x) q_{x}^{-1}$ (Lattice) gauge field theory - physics vs. ML

<u>nodes</u>: ML: feature vectors, associated to TM physics: fermions, internal quantum space

Thank you!

Maurice Weiler Jaakkola lab MIT CSAIL

X @maurice_weiler

EQUIVARIANT AND COORDINATE INDEPENDENT CONVOLUTIONAL NETWORKS A GAUGE FIELD THEORY OF NEURAL NETWORKS

Patrick Forré

Erik Verlinde

Max Welling

https://maurice-weiler.gitlab.io/#cnn_book