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how?         equivariant / steerable kernels

my research:   generalize equivariant CNNs to ... ... larger symmetry groups
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... gauge symmetries
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Outline

Euclidean CNNs  -  Translation Equivariance

Manifolds  &  Gauge Symmetries

Euclidean CNNs  -  Affine Group Equivariance

G-steerable Kernels

Equivariant Neural Networks  &  Weight Sharing Patterns
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MLPs are universal function approximators
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Toy example:  (anti)symmetric linear regression

consider curve fitting via polynomial lineaer regression:

suppose the ground truth is known to be symmetric:

this prior knowledge is incorporated by constraining the model to

takeaway: equivariance  constraint on model parameters  (“weight sharing patterns”)
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Equivariant linear layers   (“intertwiners”)

consider a linar layer / matrix multiplication 

equivariance w.r.t. representations        on        and          on          means:

equivariant matrices are themselves invariants / symmetric             characterized by “weight sharing patterns”:



Alternative approaches  -  data augmentation

apply random transformations to training data + targets

downside:  less robust,  converges slowly,  worse final performance



Alternative approaches  -  group averaging

symmetrize model by applying it to any transformed inputs & aggregating outputs

downside:  expensive for large groups



Alternative approaches  -  group averaging

transform input to canonical pose before applying model

downside:  non-robust,

continuous canonicalization (choice of orbit representative) topologically impossible



Translation equivariant Euclidean CNNs
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recall:

step 1:   specify  feature spaces  and  group actions feature maps

step 2:   find  equivariant maps convolutions / bias summation / ...
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Feature maps  as  translation group representations

continuous  feature maps are functions                         assigning features                      to points 

discretized  feature maps on        are arrays of shape

spatial / pixel dimensions feature channels

feature maps carry a translation group action

this definition includes point clouds :
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conventional CNN layer            any translation equivariant function between feature maps
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Affine group equivariant Euclidean CNNs



Symmetries of Euclidean space  -  translations
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Symmetries of Euclidean space  -  isometries

Euclidean group

rotations + reflections

translations



Symmetries of Euclidean space  -  affine

Affine groups

structure group   (rotations / reflections /

          scaling / shearing / ... )

translations



Feature fields  as  affine group representations

feature vector fields ...      ... are functions (like feature maps)

     ... carry an Aff(G)-action (details depend on field type     )

examples: scalar fields                            transform like:

tangent vector fields                            transform like:
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Feature fields  as  affine group representations

feature vector fields ...      ... are functions (like feature maps)

     ... carry an Aff(G)-action (details depend on field type     )

examples: scalar fields                            transform like:

tangent vector fields                            transform like:

Aff(G) acts here by... 1)  moving feature vectors on

2)  G-transforming feature vectors in

-feature fields                            transform like:

G-representation



Feature fields  -  examples

diffusion tensor image

(symm. pos. def. (1,1)-tensor)

fluid flow

(vector)

(subspace of)

EM field strength

(bivector / anti-symm. (0,2)-tensor)

Tensor Field Net features

(SO(3)-irreps)

(subspace of)



Affine group equivariant CNN layers

steerable CNN layer             any Aff(G)-equivariant function between feature fields

input field,
type

output field,
type



Affine group equivariant CNN layers

steerable CNN layer             any Aff(G)-equivariant function between feature fields

general result: Aff(G)-equivariance        Aff(G)-invariant neural connectivity

1)  spatial weight sharing

2)  G-steerability

Theorems proven in (Weiler et al. 2023,  Equivariant and Coordinate Independent Convolutional Networks,  Section 4.3)



taxonomy of equivariant CNNs



G-steerable kernels
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convolutions with G-steerable kernels are Aff(G)-equivariant
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the G-steerability constraint is linear

convolution kernels    form a vector space

G-steerable kernel bases

steerable kernels ... ... form a vector subspace

... can be expanded from a steerable basis set      (params = expansion weights)



Reflection steerable kernels

reflection group: with or

the general G-steerability constraint

simplifies to:



Reflection steerable kernels

field type

trivial / scalar

sign-flip / 
pseudo-scalar 

regular

original field reflected field



Reflection steerable kernels
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Reflection steerable kernels

Full derivation of these examples in  (Weiler et al. 2023,  Equivariant and Coordinate Independent Convolutional Networks,  Section 5.2)
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operators      acting on states kernels       acting on features

symmetries        representation operator constraint symmetries        steerable kernel constraint

selection rules for quantum state transitions selection rules for equivariant message passing

(e.g. vector operator)

Quantum Mechanics Deep Learning

non-zero
matrix elements!



operators / kernels are fully described by their matrix elements:      or

kernel
matrix elements

irrep 
endomorphisms

Clebsch-Gordan
coefficients

harmonics
(Peter Weyl)

symmetries couple matrix elements    reduced degrees of freedom  /  parameters

Clebsch-Gordan coeffs. (fixed)

Wigner-Eckart theorem  (G=SO(3) / spherical tensor operators) :

“reduced matrix element”
(single d.o.f. instead of           )
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assuming compact  
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Implicit steerable kernels

convolution kernels are functions

they can be implemented via MLPs

G-steerable kernels are G-equivariant functions

they can be implemented via G-equivariant MLPs

advantage: can additionally be made

input feature dependent




escnn PyTorch library

equivariant CNNs / MLPs for ...

     ... any groups G    O(d)    (d=1,2,3)

     ... arbitrary field types

https://github.com/QUVA-Lab/e2cnn
https://github.com/QUVA-Lab/escnn

native PyTorch:

escnn:

https://github.com/QUVA-Lab/e2cnn


Emperical results  -  image classification



Emperical results  -  reinforcement learning

equivariant
(simulation pre-trained)

equivariant 
(on-robot)

non-equivariant 
(on-robot)



Emperical results  -  electrodynamics  (relativistic)

EM field,  induced by moving source charges

simulate next time steps  given previous time steps

>2x lower MSE



Convolutions on homogeneous spaces  &  manifolds



Feature fields on non-Euclidean spaces

Euclidean homogeneous general surface
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idea:  equivariance     weight sharing   (convolution)

this works for any homogeneous space   (space with transitive group action)

kernels need to be steerable w.r.t. stabilizer subgroup

Homogeneous spaces



SO(2) orbits trivial orbits

idea:  equivariance     weight sharing   (convolution)

Riemannian manifolds are in general asymmetric   (no transitive actions)

weight sharing only over symmetry orbits

Riemannian manifolds  -  convolutions via isometry equivariance?
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ambiguity of reference frames

idea:

Riemannian manifolds  -  convolutions via spatial weight sharing?

despite lack of symmetries, apply kernel at each point

issue: ambiguous kernel alignments

solution: G-steerable kernels

GAUGE FREEDOM !
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Reference frames  &  coordinate independence

tangent vectors                    are coordinate free

in gauge A,     is expressed by numerical coefficients

in gauge B,     is expressed by numerical coefficients

gauge trafos                           relate coefficients:

different numbers,
same information content !

similar for feature vectors                         :   (“associated G-bundles”)

can often reduce to subgroup
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existence of G-structure may be obstructed by manifold’s topology

Gauge freedom?             G-structures!

ambiguity of frames on a manifold depends on its G-structure

singularity,
non-continuous NN behavior!

SO(2)-structure

(frames unique up to rotation)

{e}-structure

(unique frames)



Coordinate independent convolutions

Theorem:
manifold with G-structure

SO(2)-structure reflection group structure

remain coordinate independent
kernels need to be G-steerable



Global symmetries

Theorem: equivariant  w.r.t.  symmetries of G-structure     (“principal bundle automorphisms”)

SO(3)-equivariant SO(2)-equivariant



Global symmetries

Theorem: equivariant  w.r.t.  symmetries of G-structure     (“principal bundle automorphisms”)

G = {e}

recovers  Aff(G)-equivariant CNNs on Euclidean spaces

G = reflections G = SO(2) G = scaling



Global symmetries

Theorem: equivariant  w.r.t.  symmetries of G-structure     (“principal bundle automorphisms”)

polar

recovers  Aff(G)-equivariant CNNs on Euclidean spaces    &    more exotic moels!

log-polar polar + reflections



Möbius

general
2d surfaces / 
meshes

spherical / icosahedral

punctured Euclidean

Euclidean steerable CNNs



Minkowski space  +  global Poincaré symmetry Euclidean space  +  global Aff(G) symmetry

curved spacetime  +  local Lorentz trafos Riemannian manifold  +  local gauge trafos

tensor fields feature fields

invariant laws of nature (relativity) invariant neural connectivity

equivariant system dynamics equivariant inference

feature transition rules

G-steerable kernelsscalar / vector / tensor operators in QM

quantum state transition rules

Physics Deep Learning
?
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geometric structure
(group/representation theory  &  differential geometry)



(Lattice) gauge field theory  -  physics vs. ML

nodes: ML:

physics:

feature vectors,  associated to TM

fermions,  internal quantum space

edges: ML:

physics:

parallel transporters   given by geometry

gauge bosons   dynamical variables



(Lattice) gauge field theory  -  physics vs. ML

nodes: ML:

physics:

feature vectors,  associated to TM

fermions,  internal quantum space

edges: ML:

physics:

parallel transporters   given by geometry

gauge bosons   dynamical variables



https://maurice-weiler.gitlab.io/#cnn_book

Maurice Weiler

Jaakkola lab

MIT CSAIL

@maurice_weiler

Patrick Forré

Erik Verlinde

Max Welling

Thank you!
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