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Abstract

These notes were used for lectures at a Physics for AI meeting at the University of Oxford, March
2025. The first lecture focuses on applications of field theory techniques in ML, including why field theory
language is unavoidable; the statistics of neural networks, relation to generalized free fields, and non-
Gaussianities from 1/N -corrections; and the dynamics of neural networks, including the neural tangent
kernel and feature learning. The second lecture focuses on a neural network approach to field theory,
including when and why cherished principles from field theory arise, including interactions, conformal
symmetry, and unitarity. I will explain why neural networks provide a universal language for quantum
mechanical systems and demonstrate some classic results, such as Heisenberg uncertainty.
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1 Introduction

It is a remarkable time in computer science, forged by numerous
advances in machine learning. Classical examples include the use of
reinforcement learning to train world-class agents at Go and Chess
[1], the use of diffusion models to generate high quality images [2, 3],
and the use of large language models to generate exceptional code and
text, e.g. [4]. Some think we have seen sparks [5] of AGI or human-
level intelligence. In total, these advances have led to a trillion dollar
industry, many breakthroughs in the natural sciences, and Nobel
prizes in Chemistry and Physics.
Notably, the 2024 Nobel Prize in Physic was not for the application

of machine learning to cutting edge physics problems, but instead
of applications of physics principles within ML. This “Physics of
Learning” is a growing field comprised of physicists and computer
scientists from many different subfields, with a common goal to utilize
the tools of physics to understand the principles of ML.
Why should physics and ML have anything to do with each other?

A field theoretic lens on the question is the subject of these lectures,
which were given at a Physics for AI Workshop at the University
of Oxford in March 2025. The lectures focus on the emergence of
field theory in machine learning, and the use of neural networks as
a way to define and understand field theories. Much of the material
is adapted and updated from my 2024 TASI lectures [6] on Physics
for Machine Learning, but material related to network expressivity is
omitted, including universal approximation theorem, Kolomogorov-
Arnold representiation theorem, and associated network architctures.
For me, the interplay between field theory and ML cuts both ways.

Accordingly, one lecture will be for ML, and the other for physics.

Acknowledgements: I would like to thank Ard Louis, Andre
Lukas, Shivaji Sondhi, and especially Andrei Constantin for organiz-
ing this meeting, the participants and speakers for a lively meeting,
and many friends whose work inspired these lectures. I am sup-
ported by the National Science Foundation under CAREER grant
PHY-1848089 and Cooperative Agreement PHY-2019786 (The NSF
AI Institute for Artificial Intelligence and Fundamental Interactions).

2 Field Theory for Machine Learning

In this lecture I’ll explain how field theoretic concepts emerge nat-
urally in ML, and present a number of classic associated results on
the statistics and dynamics of neural networks.

2.1 Why Field Theory?

Understanding ML at the very least means understanding neural
networks. A neural network is a function

ϕθ : Rd → R (1)

with parameters θ. We’ve chosen outputs in R because, channeling
Coleman, scalars already exhibit the essentials. We’ll use the lingo

Input: x ∈ Rd (2)

Output: ϕθ(x) ∈ R (3)

Network: ϕθ ∈ Maps(Rd,R) (4)

Data: D, (5)

where the data D depends on the problem, but involves at least a
subset of Rd, potentially paired with labels y ∈ R.
With this minimal background, let’s ask our central question:

Question: What does a NN predict?

For any fixed value of θ, the answer is clear: ϕθ(x). However, the
answer is complicated by issues of both dynamics and statistics.
First, dynamics. In ML, parameters are updated to solve prob-

lems and we really have trajectories in

Parameter Space: θ(t) ∈ R|θ| (6)

Output Space: ϕθ(t)(x) ∈ R (7)

Function Space: ϕθ(t) ∈ Maps(Rd,R). (8)
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governed by some learning dynamics determined by the optimization
algorithm and the nature of the learning problem. For instance, in
supervised learning we have data

D = {(xα, yα) ∈ Rd × R}|D|
α=1, (9)

and a loss function

L[ϕθ] =

|D|∑
α=1

ℓ(ϕθ(xα), yα), (10)

where ℓ is a loss function such as ℓMSE = (ϕθ(xα) − yα)
2. One may

optimize θ by gradient descent

dθi
dt

= −∇θiL[ϕθ], (11)

or other algorithms, e.g., classics like stochastic gradient descent
(SGD) [7, 8] or Adam [9], or a more recent technique such as Energy
Conserving Descent [10, 11]. Throughout, t is training time of the
learning algorithm unless otherwise noted.
Second, statistics. When a NN is initialized on your computer,

the parameters θ are initialized as draws

θ ∼ P (θ) (12)

from a distribution P (θ), where ∼ means “drawn from” in this con-
text. Different draws of θ will give different functions ϕθ, and a priori
we have no reason to prefer one over another. The prediction ϕθ(x)
therefore can’t be fundamental! Instead, what is fundamental is the
average prediction and second moment or variance:

E[ϕθ(x)] =

∫
dθP (θ)ϕθ(x) (13)

E[ϕθ(x)ϕθ(y)] =

∫
dθP (θ)ϕθ(x)ϕθ(y), (14)

as well as the higher moments. Expectations are across different
initializations. Since we’re physicists, we henceforth replace E[·] = ⟨·⟩

and we remember this is a statistical expectation value. It’s useful
to put this in our language:

G(1)(x) = ⟨ϕθ(x)⟩ (15)

G(2)(x, y) = ⟨ϕθ(x)ϕθ(y)⟩, (16)

the mean prediction and second moment are just the one-point and
two-point correlation functions of the statistical ensemble of neural
networks. Apparently ML has something to do with field theory.
Putting the dynamics and statistics together, we have an ensemble

of initial θ-values, each of which is the starting point of a trajectory
θ(t), and therefore we have an ensemble of trajectories. We choose
to think of θ(t) drawn as

θ(t) ∼ P (θ(t)), (17)

a density on parameters that depends on the training time and yields
time-dependent correlators

G
(1)
t (x) = ⟨ϕθ(x)⟩t (18)

G
(2)
t (x, y) = ⟨ϕθ(x)ϕθ(y)⟩t, (19)

where the subscript t indicates time-dependence and the expecta-
tion is with respect to P (θ(t)). Of course, assuming that learning is
helping, we wish to take t → ∞ and are interested in

G
(1)
∞ (x) = mean prediction of ∞-number of NNs as t → ∞.

Remarkably, we will see that in a certain supervised setting there is
an exact analytic solution for this quantity.
Having set the basic groundwork, in the remainder of this lecture

we will take a deeper dive into the statistics and dynamics of neural
networks, and the emergence of field theoretic concepts.

2.2 Statistics of Neural Networks

Let’s try to understand neural networks at initialization. For this,
firing up your computer once is not enough, since one initialization
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give you one draw θ ∼ P (θ) and therefore one random neural net-
work. Instead, we want to understand the statistics of the networks:

Question: What characterizes the stats of the NN ensemble?

One aspect of this is encoded in the moments, or n-pt functions,

G(n)(x1, . . . , xn) = ⟨ϕ(x1) . . . ϕ(xn)⟩, (20)

which may be obtained from a partition function as

Z[J ] = ⟨e
∫
ddxJ(x)ϕ(x)⟩ (21)

G(n)(x1, . . . , xn) =

(
δ

δJ(x1)
. . .

δ

δJ(xn)
Z[J ]

) ∣∣∣∣
J=0

, (22)

where J(x) is a source. This expectation ⟨·⟩ is intentionally not spec-
ified here to allow for flexibility. For instance, using the expectation
in the introduction we have

Z[J ] =

∫
dθP (θ)e

∫
ddxJ(x)ϕ(x), (23)

reminding the reader that the NN ϕ(x) depends on θ. The partition
function integrates over the density of network parameters. But as
physicists we’re much more familiar with function space densities
according to

Z[J ] =

∫
Dϕ e−S[ϕ]e

∫
J(x)ϕ(x), (24)

the Feynman path integral that determines the correlators from an
action S[ϕ] that defines a density on functions.
Since starting a neural network requires specifying the data

(ϕ, P (θ)), the parameter space partition function (23) and associ-
ated parameter space calculation of correlators is always available to
us. Given that mathematical data, one might ask

Question: What is the action S[ϕ] associated to (ϕ, P (θ))?

When this question can be answered, it opens a second way of study-
ing or understanding the theory. The parameter-space and function-
space descriptions should be thought of as a duality.

2.2.1 NNGP Correspondence

Having raised the question of the action S[ϕ] associated to the net-
work data (ϕ, P (θ)), we can turn to a classic result of Neal [12].
For simplicity, we again consider a single-layer fully connected net-

work of width N , with the so-called biases turned off for simplicity:

ϕ(x) =
1√
N

N∑
i=1

d∑
j=1

w
(1)
i σ(w

(0)
ij xj), (25)

where the set of network parameters is θ = {w(0)
ij , w

(1)
i } independently

and identically distributed (i.i.d.).

w
(0)
ij ∼ P (w(0)) w

(1)
i ∼ P (w(1)). (26)

Under this assumption, we see

Observation: The network is a sum of N i.i.d. functions.

This is a function version of the Central Limit Theorem, generaliz-
ing the review in Appendix A, and gives us the Neural Network /
Gaussian Process (NNGP) correspondence,

NNGP Correspondence: in the N → ∞ limit, ϕ is drawn
from a Gaussian Process (GP),

lim
N→∞

ϕ(x) ∼ N (µ(x), K(x, y)) , (27)

with mean and covariance (or kernel) µ(x) and K(x, y).

By the CLT, exp(−S[ϕ]) is Gaussian and therefore S[ϕ] is quadratic
in networks. Now this really feels like physics, since the infinite neural
network is drawn from a Gaussian density on functions, which defines
a generalized free field theory.
We will address generality of the NNGP correspondence momen-

tarily, but let’s first get a feel for how to do computations. To facil-
itate then, we take P (w(1)) to have zero mean and finite variance,

⟨w(1)⟩ = 0 ⟨w(1)w(1)⟩ = µ2, (28)
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which causes the one-point function to vanish G(1)(x) = 0. Following
Williams [13], we compute the two-point function in parameter space
(with Einstein summation)

G(2)(x, y) =
1

N
⟨w(1)

i σ(w
(0)
ij xj) w

(1)
k σ(w

(0)
kl yl)⟩ (29)

=
1

N
⟨w(1)

i w
(1)
k ⟩⟨σ(w(0)

ij xj)σ(w
(0)
kl yl)⟩ (30)

=
µ2

N
⟨σ(w(0)

ij xj)σ(w
(0)
il yl)⟩, (31)

where the last equality follows from the ones being i.i.d., ⟨w(1)
i w

(1)
k ⟩ =

µ2δik. The sum over i gives us N copies of the same function, leaving
us with

G(2)(x, y) = µ2 ⟨σ(w(0)
ij xj)σ(w

(0)
il yl)⟩, (32)

where we emphasize there is now no summation on i. This is an
exact-in-N two-point function that now requires only on the com-
putation of the quantity in bra-kets. One may try to evaluate it
exactly by doing the integral over w(0). If it can’t be done, Monte
Carlo estimates may be obtained from M samples of w(0) ∼ P (w(0))
as

G(2)(x, y) ≃ µ2

M

M∑
samples

σ(w
(0)
ij xj)σ(w

(0)
il yl). (33)

In typical NN settings, parameter densities are easy to sample for
convenience, allowing for easy computation of the estimate. If the
density is more complicated, one may always resort to Markov chains,
e.g. as in lattice field theory.
With this computation in hand, we have the defining data of this

NNGP,
lim

N→∞
ϕ(x) ∼ N

(
0, G(2)(x, y)

)
. (34)

The associated action is

S[ϕ] =

∫
ddxddy ϕ(x)G(2)(x, y)−1 ϕ(y), (35)

where ∫
ddy G(2)(x, y)−1G(2)(y, z) = δ(d)(x− z). (36)

defines the inverse two-point function. In fact, this allows us to
determine the action of any NNGP with µ(x) = G(1)(x) = 0, by
computing the G(2) in parameter space and inverting it.

So certain large neural networks are function draws from general-
ized free field theories. But at this point you might be asking yourself

Question: How general is the NNGP correspondence?

Neal’s result — that infinite-width single-layer feedforward NNs are
drawn from GP — stood on its own for many years, perhaps (I am
guessing) due to focus on non-NNML techniques in the 90’s and early
2000’s during a so-called AI Winter. As NNs succeeded on many
tasks in the 2010’s after AlexNet [14], however, many asked whether
architecture X has a hyperparameter N such that the network is
drawn from a Gaussian Process as N → ∞. Before listing such X’s,
let’s rhetorically ask

Question: Didn’t Neal’s result essentially follow from summing
N i.i.d. random functions? Maybe NNs do this all the time?

In fact, that is the case. Architectures admitting an NNGP limit
include

• Deep Fully Connected Networks, N = width,

• Convolutional Neural Networks, N = channels,

• Attention Networks, N = heads,

and many more. See, e.g., [15] and references therein.

2.2.2 Non-Gaussian Processes

If the GP limit exists due to the CLT, then violating any of the as-
sumptions of the CLT should introduce non-Gaussianities, which are
interactions in field theory. From Appendix A, we see that the CLT
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is violated by finite-N corrections and breaking statistical indepen-
dence. See [16] for a systematic treatment of independence breaking,
and derivation of NN actions from correlators.
We wish to see the N -dependence of the connected 4-pt function.

William’s technique for computing G(2) extends to any correlator. To
avoid a proliferation of indices, we will compute it using the notation

ϕ(x) =
∑
i

wiφi(x) (37)

where wi is distributed as w(1) was in the single layer case, and φi(x)
are i.i.d. neurons of any architecture. The four-point function is

G(4) = ⟨ϕ(x)ϕ(y)ϕ(z)ϕ(w)⟩ (38)

=
∑
i,j,k,l

⟨wiwjwkwl⟩⟨φi(x)φj(y)φk(z)φl(w)⟩ (39)

=
∑
i

⟨w4
i ⟩⟨φi(x)φi(y)φi(z)φi(w)⟩ (40)

+
∑
i ̸=j

⟨w2
i ⟩⟨w2

j ⟩⟨φi(x)φi(y)φj(z)φj(w) + perms⟩. (41)

One can see that you have to be careful with indices. The connected
4-pt function is [17]

G(4)
c (x,y, z, w) = G(4)(x, y, z, w)−

(
G(2)(x, y)G(2)(z, w) + perms

)
,

(42)
and watching indices carefully we obtain

G(4)
c (x,y, z, w) =

1

N

(
µ4

〈
φi(x)φi(y)φi(z)φi(w)

〉
(43)

−µ2
2

(〈
φi(x)φi(y)

〉
⟨φi(z)φi(w)⟩+ perms

))
, (44)

with no Einstein summation on i. We see that the connected 4-pt
function is non-zero at finite-N , signalling interactions. We will see
that in some examples G

(4)
c can be computed exactly.

2.3 Dynamics of Neural Networks

Having covered expressivity and statistics, we turn to dynamics. Fo-
cusing on the most elementary NN dynamics, we ask

Question: How does a NN evolve under gradient descent?

First we will study a simplification known as the neural tangent ker-
nel (NTK), and then will use it in the case of MSE loss to solve a
model exactly. We’ll discuss drawbacks of the NTK, and then im-
prove upon them with a scaling analysis that ensures feature learning.
We will study the dynamics of supervised learning with gradient

descent, with data
D = {(xα, yα)}|D|

α=1, (45)

and loss function

L[ϕ] = 1

|D|

|D|∑
α=1

ℓ(ϕ(xα), yα), (46)

We optimize the network parameters θ by gradient descent,

dθi
dt

= −η∇θiL[ϕ]. (47)

It is also convenient to define

∆(x) = −δℓ(ϕ(x), y)

δϕ(x)
, (48)

where y is to be understood as the label associated to x, which yields

dθi
dt

=
η

|D|

|D|∑
α=1

∆(xα)
∂ϕ(xα)

∂θi
. (49)

as another form of the gradient descent equation, by chain rule. ∆(x)
is the natural object of gradient descent in function space.
We use Einstein summation throughout this section unless

stated otherwise (which will happen).
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2.3.1 Neural Tangent Kernel

We now arrive at a classic dynamical result in ML theory, the neural
tangent kernel [18]. We train the network by gradient descent

dϕ(x)

dt
=

∂ϕ(x)

∂θi

dθi
dt

(50)

=
η

|D|

|D|∑
α=1

∆(xα)Θ(x, xα), (51)

where

Θ(x, xα) =
∂ϕ(x)

∂θi

∂ϕ(xα)

∂θi
(52)

is the neural tangent kernel (NTK).
Given the short derivation, this is clearly a fundamental object,

but it seems terrible to work with, because it is:

• Parameter-dependent. For modern NNs, there are billions of
parameters to sum over.

• Time-dependent. Of course, the learning trajectory is θ(t),
and therefore the NTK time evolves.

• Stochastic. Since θ(t) begins at θ(0) sampled at initialization,
the NTK inherits the randomness.

It’s also non-local, communicating information about the loss at train
points xα to the test point x. In summary, the NTK is unwieldy.
The reason it is a classic result, however, is that it simplifies in

the N → ∞ limit. In this limit, neural network training is in the
so-called

Lazy regime: |θ(t)− θ(0)| ≪ 1, (53)

i.e. the number of parameters is large but the evolution keeps them in
a local neighborhood. In such a regime the network is approximately
a linear-in-parameters model [18, 19]

lim
N→∞

ϕ(x) ≃ ϕlin(x) := ϕθ0(x) + (θ − θ0)i
∂ϕ(x)

∂θi

∣∣∣∣
θ0

, (54)

and we have
lim

N→∞
Θ(x, x′) ≃ Θ(x, x′)

∣∣
θ0
. (55)

That is, the infinite-width NTK is the NTK at initialization, provided
that the network evolves as a linear model. Furthermore, in the same
limit the law of large numbers often allows a sum to be replaced by
an expectation value, e.g.,

lim
N→∞

Θ(x, x′)|θ0 = ⟨βθ(x, x
′)⟩ =: Θ̄(x, x′), (56)

for computable β(x, x′), yielding network dynamics governed by

dϕ(x)

dt
= − η

|D|

|D|∑
α=1

δl(ϕ(xα), yα)

δϕ(xα)
Θ̄(x, xα), (57)

where Θ̄ is the so-called frozen NTK, a kernel that may be com-
puted at initialization and fixed once-and-for-all. This is a dramatic
simplification of the dynamics.
However, you should also complain.

Complaint: The dynamics in (57) simply interpolates between
information at train points xα and test point x,

according to a fixed function Θ̄. This isn’t “learning” in the usual
NN sense, and there are zero parameters. In particular, since the
NN only affects (57) through Θ̄, which is fixed, nothing happening
dynamically in the NN is affecting the evolution. We say that in this
limit the NN does not learn features in the hidden dimensions
(intermediate layers), since their non-trivial evolution would cause
the NTK to evolve.

Example. Let’s compute the frozen NTK for a single-layer network,
to get the idea. The architecture is

ϕ(x) =
1√
N

N∑
i=1

d∑
j=1

w
(1)
i σ(w

(0)
ij xj). (58)
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We make the sums explicit here because one is very important. The
NTK is

Θ(x, x′) =
∑
i

∂ϕ(x)

∂w
(1)
i

∂ϕ(x′)

∂w
(1)
i

+
∑
ij

∂ϕ(x)

∂w
(0)
ij

∂ϕ(x′)

∂w
(0)
ij

(59)

=
1

N

N∑
i=1

( d∑
j,l=1

σ(w
(0)
ij xj)σ(w

(0)
il x′

l) (60)

+
d∑

j=1

xjx
′
j w

(1)
i w

(1)
i σ′(w

(0)
ij xj)σ

′(w
(0)
ij x′

j)

)
(61)

=:
1

N

∑
i

βi(x, x
′). (62)

If you squint a little, you’ll see that the i-sum is a sum over the
same type of object, βi(x, x

′), whose i dependence comes from all
these i.i.d. parameter draws in the i-direction. By the law of large
numbers, we have that in the N → ∞ limit

Θ̄(x, x′) = ⟨βi(x, x
′)⟩, (63)

with no sum on i. We emphasize

Observation: The NTK in the N → ∞ limit is deterministic
(parameter-independent), depending only on P (θ).

Sometimes, the expectation may be computed exactly, and one knows
the NTK that governs the dynamics once and for all.

2.3.2 An Exactly Solvable Model

Let us consider a special case of frozen-NTK dynamics with MSE
loss,

ℓ(ϕ(x), y) =
1

2
(ϕ(x)− y)2. (64)

Then the dynamics (57) becomes

dϕ(x)

dt
= − η

|D|

|D|∑
α=1

(ϕ(xα)− yα)Θ̄(x, xα). (65)

The solution to this ODE is

ϕt(x) = ϕ0(x)+
1

|D|
Θ̄(x, xα)Θ̄(xα, xβ)

−1
(
1− e−ηΘ̄t

)
βγ

(yγ − ϕ0(xγ)) ,

(66)
where computational difficulty is that Θ̄(x, xα) is a |D| × |D| matrix
and takes O(|D|3) time to invert. The solution defines a trajectory
through function space from ϕ0 to ϕ∞. The converged network is

ϕ∞(x) = ϕ0(x) + Θ̄(x, xα)Θ̄(xα, xβ)
−1 (yβ − ϕ0(xβ)) . (67)

This is known as kernel regression, a classic technique in ML. In
general kernel regression, one chooses the kernel. In our case, gradi-
ent descent training in the N → ∞ limit is kernel regression, with
respect to a specific kernel determined by the NN, the NTK Θ̄.
On train points we have memorization

ϕ∞(xα) = yα ∀α. (68)

On test points x, the converged network is performing an interpola-
tion, communicating residuals Rβ on train points β through a fixed
kernel Θ̄ to test points x. The prediction depends on ϕ0, but may be
averaged over to obtain

µ∞(x) := ⟨ϕ∞(x)⟩ = Θ̄(x, xα)Θ̄(xα, xβ)
−1yβ, (69)

provided that ⟨ϕ0⟩ = 0, as in many initializations for the parameters.
Let’s put some English on the remarkable facts,

• µ∞(x) is the mean prediction of an ∞ number of ∞-wide NNs
trained to ∞ time.

• If ϕ0 is drawn from a GP, then ϕ∞ is as well. The mean is pre-
cisely µ∞(x), see [19] for the two-point function and covariance.

2.3.3 Feature Learning

The frozen NTK is a tractable toy model, but it has a major draw-
back: it does not learn features. In this section we briefly present
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principles that ensure feature learning, building on lecture notes of
Pehlevan and Bordelon [20] that I also utilized in detail in my TASI
lectures; see those lectures for more details, [21, 22] for original lit-
erature from those lectures that I utilize, and [23, 24] as well as
Boris Hanin’s lectures at this workshop for related work on feature
learning. The feature learning principles are

• Finite Initialization Pre-activations. z(ℓ) ∼ ON(1) ∀l.

• Learning in Finite Time. dϕ(x)/dt ∼ ON(1).

• Feature Learning in Finite Time. dz(ℓ)/dt ∼ ON(1) ∀l.

Where the words are the general idea, and the equations their im-
plementation in a specific case: a deep feedforward network with L
layers and width N , which in all is a map

ϕ : RD → R (70)

(note the input dimension D; d is reserved for below) defined recur-
sively as

ϕ(x) =
1

γ0Nd
z(L)(x) (71)

z(L)(x) =
1

NaL
w

(L)
i σ(z

(L−1)
i (x)) (72)

z
(ℓ)
i (x) =

1

Naℓ
W

(ℓ)
ij σ(z

(ℓ−1)
j (x)) (73)

z
(1)
i (x) =

1

Na1
√
D
W

(1)
ij xj (74)

where Einstein summation is implied throughout this section (unless
stated otherwise) and all Latin indices run from {1, . . . , N} except
in the j-index in the first layer, when they are {1, . . . , D}. The
parameters are drawn

w
(ℓ)
i ∼ N

(
0,

1

N bL

)
W

(ℓ)
ij ∼ N

(
0,

1

N bℓ

)
. (75)

We scale the learning rate as

η = η0γ
2
0N

2d−c (76)

with γ0, η0 O(1) constants, where d has already been introduced but
c is a new parameter. The z’s are known as the pre-activations, as
they are the inputs to the activation functions σ.
We have a standard MLP but have parameterized our ignorance

of N -scaling, governed by parameters (aℓ, bℓ, c, d). Demanding that
our principles hold, a few page calculation yields

Result: There is a one-parameter family of solutions that en-
sure feature learning, according to the principles above.

Furthermore, it is completely fixed if one also demands that η is O(1)
in N . This is known as the maximal update parameterization [21].

3 Machine Learning for Field Theory

In this lecture we will turn the table around, asking instead whether
ML can do something for field theory.

3.1 NN-FT Correspondence

Understanding the statistics and dynamics of NNs has led us natu-
rally to objects that we are used to from field theory. The idea has
been to understand ML theory, but one can also ask the converse,
whether ML theory gives new insights into field theory. With that
in mind, we ask

Question: What is a field theory?

At the very least, a field theory needs

• Fields, functions from an appropriate function space, or sections
of an appropriate bundle, more generally.
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• Correlation Functions of fields, here expressed as scalars

G(n)(x1, . . . , xn) = ⟨ϕ(x1) . . . ϕ(xn)⟩. (77)

You might already be wanting to add more beyond these minimal
requirements – we’ll discuss that in a second. For now, we have

Answer: a FT is an ensemble of functions with a way to com-
pute their correlators.

In the Euclidean case, when the expectation is a statistical expecta-
tion, one my say

Euclidean Answer: a FT is a statistical ensemble of functions.

Our minimal requirements get us a partition function

Z[J ] = ⟨e
∫
ddxJ(x)ϕ(x)⟩ (78)

that we can use to compute correlators, where at this stage we are
agnostic about the definition of ⟨·⟩. In normal field theory, the ⟨·⟩ is
defined by the Feynman path integral

Z[J ] =

∫
Dϕ e−S[ϕ]+

∫
ddxJ(x)ϕ(x), (79)

which requires specifying an action S[ϕ] that determines a density
on functions exp(−S[ϕ]). But that’s not the data we specify when
we specify a NN. The NN data (ϕθ, P (θ)) instead defines

Z[J ] =

∫
dθP (θ)e

∫
ddxJ(x)ϕθ(x). (80)

These are two different ways of defining a field theory, and indeed
given (ϕθ, P (θ)) one can try to work out the associated action, in
which case we have dual description of the same field theory, as in the
NNGP correspondence. The parameter space description is already
quite useful, though, as it enables the computation of correlation

functions even if the action isn’t known. In certain cases it enables
the computation of exact correlators in interacting theories.

Okay, you get it, this is a different way to do field theory. Now I’ll
let you complain about my definition. You’re asking

Question: Shouldn’t my definition of field theory include X?

I’m writing this before I give the lecture, and my guess is you already
asked about a set of X’s, e.g.

X ∈ {Quantum, Lagrangian, Symmetries, Locality, . . . }. (81)

The problem is that with any such X, there’s usually some commu-
nity of physicists that doesn’t care. QFT Types / Communities:

1. Perturbative Lagrangian,

2. Lattice,

3. Geometric Engineering,

4. Conformal Bootstrap,

5. Statistical Field Theory,

6. Constructive QFT,

7. Algebraic QFT,

8. . . .

For instance, not all statistical field theories are Wick rotations of
quantum theories; not all field theories have a known Lagrangian;
not all field theories have symmetry; not all field theories are local.
So I’m going to stick with my definition, because at a minimum I
want fields and correlators.
Instead, if your X isn’t included in the definition of field theory,

then X is an engineering problem. Whether you’re defining your
specific theory by S[ϕ], (ϕθ, P (θ)), or something else, you can ask
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Question: Can I engineer my defining data to get FT + X?

For X = Symmetries you’ve already seen ways to do this at the level
of actions in QFT1 and at the level of (ϕθ, P (θ)) in these lectures.
For a current account of recent progress in NN-FT, see the rather

long Introduction of [16] and associated references, as well as results.

3.2 When is a NN-FT Quantum?

We’ve been on Euclidean space the whole time1, so it’s natural to
wonder in what sense these field theories are quantum. In a course
on field theory, we first learn to canonically quantize and then at
some later point learn about Wick rotation, and how it can define
Euclidean correlators. The theory is manifestly quantum.
But given a Euclidean theory, can it be continued to a well-behaved

quantum theory in Lorentzian signature, e.g. with unitary time evo-
lution and a Hilbert space without negative norm states? If we have
a nice-enough local action, it’s possible, but what if we don’t have
an action? We ask:

Question: Given Euclidean correlators, can the theory be con-
tinued to a well-behaved Lorentzian quantum theory?

This is a central question in axiomatic quantum field theory, and the
answer is that it depends on the properties of the correlators. The
Osterwalder-Schrader (OS) Axioms [26] gives a set of conditions
on the Euclidean correlators that ensure that the theory can be con-
tinued to a unitary Lorentzian theory that satisfies the Wightman
axioms. The conditions of the theorem include

• Euclidean Invariance. The correlators are invariant under the
Euclidean group, which after continuation to Lorentzian signa-
ture becomes the Poincaré group.

• Permutation Invariance of the correlators G(n)(x1, . . . , xn)
under any permutation of the x1, . . . , xn.

1This can be relaxed, see e.g. for a recent paper defining an equivariant
network in Lorentzian signature [25].

• Reflection Positivity. Having time in Lorentzian signature
requires picking a Euclidean time direction τ . Let R(x) be the
reflection of x in the τ = 0 plane. Then reflection positivity
requires that

G(2n)(x1, . . . , xn, R(x1), . . . , R(xn)) ≥ 0. (82)

Technically, this is necessary but not sufficient. An accessible
elaboration can be found in notes [27] from a previous TASI.

• Cluster Decomposition occurs when the connected correla-
tors vanish when any points are infinitely far apart.

If all of these are satisfied, then the pair (ϕθ, P (θ)) that defines the
NN-FT actually defines a neural network quantum field theory [28].
In NN-FT, permutation invariance is essentially automatic and Eu-
clidean invariance may be engineered [28]. Cluster decomposition
and reflection positivity hold in some examples [28, 16], but system-
atizing their construction is an important direction for future work.
There is at least one straightforward way to obtain an interacting

NN-QFT. Notably, if (ϕθ, P (θ)) is a NNGP that satisfies the OS
axioms (this is much easier [28]) with Gaussian partition function

ZG[J ] =

∫
dθP (θ)e

∫
ddxJ(x)ϕθ(x), (83)

then one may insert an operator associated to any local potential
V (ϕ), which deforms the action in the expected way and the NN-FT
to

Z[J ] =

∫
dθP (θ)e

∫
ddxV (ϕθ(x))e

∫
ddxJ(x)ϕθ(x) (84)

=:

∫
dθP̃ (θ)e

∫
ddxJ(x)ϕθ(x), (85)

where the architecture equation ϕθ(x) lets us sub out the abstract ex-
pression for a concrete function of parameters, defining a new density
on parameters P̃ (θ) in the process. The interactions in V (ϕ) break
Gaussianity of the NNGP that was ensured by a CLT. This means
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a CLT assumption must be violated: it is the breaking of statistical
independence in P̃ (θ). The theory Z[J ] defined by (ϕθ, P̃ (θ)) is an
interacting NN-QFT, since local potentials that deformed Gaussian
QFTs still satisfy reflection positivity and cluster decomposition.
With this discussion of operator insertions, it’s clear now how to

get ϕ4 theory. We just insert the operator

e
∫
ddxϕθ(x)

4

(86)

into the partition function associated to the free scalar; this operator
with the architecture (100) technically requires an IR cutoff, though
other architectures realizing the free scalar may not. The operator
insertion deforms the parameter densities in (101) and breaks their
statistical independence, explaining the origin of interactions in the
NN-QFT. See [16] for a thorough presentation.

3.3 Features of Field Theories in NN-FT

If we are to view field theories as theories of fields and associated
correlation functions, which might be adorned with extra features
in X, it is natural to ask which features may be engineered in NN-
FT. This is a developing subject, but I will summarize some results
related to symmetries, interactions, and conformal fields, and then
present some essential results on quantum mechanics.

3.3.1 Symmetries

It natural at this point to ask:

Question: Are there global symmetries in NN-FT?

By this I mean symmetries that the ensemble of NNs realizes that an
individual network might not see, i.e. the individual network might
not be invariant or even equivariant, but the ensemble is invariant.
To allow for symmetries at both input and output, in this section

we consider networks
ϕ : Rd → RD. (87)

with D-dimensional output. We’re interested in symmetries that
arise in ensembles of neural networks, which leave the statistical en-
semble invariant. In field theory, we call them global symmetries.
Let the network transform under a group action as

ϕ 7→ ϕg, g ∈ G. (88)

We say that ensemble of networks has a global symmetry group G if
the partition function is invariant,

Zg[J ] = Z[J ], ∀g ∈ G. (89)

At the level of expectations, this is

⟨e
∫
ddxJ(x)ϕg(x)⟩ = ⟨e

∫
ddxJ(x)ϕ(x)⟩ ∀g ∈ G, (90)

where one can put indices on ϕ and J as required by D. By a field
redefinition, this may be cast as having a symmetry if ⟨·⟩ is invariant.
In the usual path integral this is the statement of invariant action
S[ϕ] and measure Dϕ. In parameter space, the redefinition may be
instituted [29] by absorbing g into a redefinition of parameters as
θ 7→ θg, with symmetry arising when∫

dθgP (θg)e
∫
ddxJ(x)ϕθ(x) =

∫
dθP (θ)e

∫
ddxJ(x)ϕθ(x), (91)

i.e. the parameter density and measure must be invariant. We will
give a simple example realizing this mechanism in a moment.
It is most natural to transform the input or output of the network.

Our mechanism allows for symmetries of both types, which in normal
language are

NN Ensembles Field Theory
Input Symmetries Spacetime Symmtries
Output Symmetries Internal Symmetries

It may also be interesting to study symmetries of intermediate lay-
ers, if one wishes to impose symmetries on learned representations.
Equivariance fits into this picture because it turns a transformation
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at input into a transformation at output. The ensemble of equiv-
ariant NNs is invariant under ρd action on the input if the partition
function is invariant under the induced ρD action on the output.

Example. Theories that are Wick rotations of Lorentz-invariant
QFTs enjoy Euclidean symmetry (rotations and translations). To
see how it might arise, consider the neurons

ℓi(x) = F (w(0)
i) cos

(∑
j

w
(0)
ij xj + b

(0)
i

)
, i ∈ 1, . . . , N, (92)

where the sum has been made explicit since i’s are not summed over,
with

w
(0)
ij ∼ P (w

(0)
ij ) b

(0)
i ∼ Unif[−π, π]. (93)

These neurons are in Euclidean invariant ensembles, and enjoy other
properties

• Larger Euclidean Nets. Any network that builds on ℓ, e.g.
f(ℓ(x)), without reusing its parameters is Euclidean-invariant.

• Spectrum Shaping. In computing G(2)(p), bi gets evaluated
on p, and F may be chosen to shape the power spectrum (mo-
mentum space propagator) arbitrarily.

• Periodic Functions. One may replace cos by any periodic
function with period 2π, (or otherwise, if one also changes the
endpoints of the Unif distribution).

We refer the reader to [28] for general calculations of ℓ-correlators.
We obtain the free scalar by spectrum shaping with the choice

F (w(0)
i) =

1

w(0)
i ·w(0)

i +m2
. (94)

Then a linear output layer on the ℓ’s gives a network

ϕ(x) =
1√
N

∑
aiℓi(x) (95)

chosen with output weights i.i.d. and ⟨a2⟩ ∼ N0, ⟨a⟩ = 0. A short
computation gives

G(2)(p) =
1

p2 +m2
(96)

up to a computable normalization factor for all N , which is the only
non-trivial correlator as N → ∞, realizing the free scalar field.

3.3.2 Interactions and ϕ4 Theory

In my first lecture, we learned that non-interacting (i.e. Gaussian)
NN-FTs are in general Gaussian for a reason: the Central Limit
Theorem (CLT); see Appendix A for a brief review. Of course, the
vanilla statement is that a random variable

ϕ =
1√
N

N∑
i=1

Xi, (97)

obtained as a sum of N i.i.d. random variables Xi with finite vari-
ance, is Gaussian in the limit N → ∞. This makes two essential
assumptions:

1. N → ∞.

2. Xi ∼ P (Xi) are i.i.d.

Therefore, one may introduce interactions (non-Gaussianities) by vi-
olating these assumptions. That is:

Origin of Interactions: 1/N or independence breaking.

The 1/N non-Gaussianities are captured by the connected correlation
functions, where for a NN obtainted from N neurals we have

ϕ(x) =
1

N

∑
i

aiφi(x), (98)

where ai and φi are output weights and neurons drawn i.i.d., and the
connected correlators scale as

G(2n)
c (x1, . . . , xn) ∼

1

Nn−1
, (99)
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so that higher order correlators vanish as N → ∞, precisely as ex-
pected by the CLT. We saw this same result in the first lecture when
we discussed non-Gaussian processes.
One may also exhibit interactions by independence breaking, even

in the N → ∞ limit, which we now exemplify.

Example: ϕ4 Theory. Here is one final example you might like,

ϕ(x) =

√
2vol(Bd

Λ)

(2π)dσ2
w1

1√
w(0)2

i +m2

w
(1)
i cos

(
w

(0)
ij xj + b

(0)
i

)
, (100)

and specific parameter densities

w(1) ∼ N
(
0,

σ2
w1

N

)
w(0) ∼ Unif(Bd

Λ) b(0) ∼ Unif[−π, π],

(101)
where Bd

Λ is a d-ball of radius Λ. The theory is translation invariant
by construction, and so we compute the power spectrum of the two-
point function G(2)(x− y) to be

G(2)(p) =
1

p2 +m2
. (102)

We see that we have a realization of the free scalar field theory in d
Euclidean dimensions.
Given the free scalar, we know how to obtain ϕ4 theory. We just

insert the operator
e
∫
ddxϕθ(x)

4

(103)

into the partition function associated to the free scalar; this operator
with the architecture (100) technically requires an IR cutoff, though
other architectures realizing the free scalar may not. Writing the
parameters θ = {w(1), w(0), b(0)} and the free scalar partition function
as

Z[J ] =

∫
dθP (θ) e

∫
ddxJ(x)ϕθ(x) (104)

we see the operator insertion deforms the parameter densities

P (θ) 7→ P (θ)ϕ4 = P (θ) e
∫
ddxϕθ(x)

4

(105)

Lorentz Generator Conformal Transformation
Lij Rotation
L+− Scaling
Li+ Translation
Li− Special Conformal

Table 1: Lorentz generators in (D+2)-dimensions and the conformal
transformation they induce on the Poincaré section RD, written in
the light-cone coordinates instead of Minkowski, where i = 1, · · · , D
and +/− are the light-cone indices.

where the RHS depends on parameters through the use of the archi-
tecture equation, explaining the origin of interactions by the breaking
of statistical independence. See [16] for a thorough presentation.

3.3.3 Conformal Fields

Another central topic in FT is

CFT: describes RG fixed points and phase transitions.

Minimally, they are field theories with correlators that respect the
conformal group, the group of transformations that preserve angles,
which in d Euclidean dimensions dimensions is SO(d + 1, 1). This
leads to

Dirac’s Observation: SO(d + 1, 1) is the Lorentz group in
d+ 2 dimensions and the conformal group in d dimensions.

This observation is utilized in the so-called embedding formalism in
the CFT community, which obtains the space Rd of a CFT from
Rd+1,1 by passing to the null cone

NC := {x · x+X2
d+1 −X2

0 = x · x−X+X− = 0}, (106)

where Xµ = (X0, x,Xd+1) ∈ Rd+1,1, the lightcone coordinates are
X± = X0 ±Xd+1, and x ∈ Rd. The projective null cone is defined to
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be

PNC =
NC \ 0
R \ 0

, (107)

and one obtains a copy of Rd by passing to the Poincaré section

Xµ = (X+, x,X−) = (1, x, x2) ∈ Rd ⊊ Rd+1,1. (108)

Then, Lorentz transformations in Rd+1,1 induce conformal transfor-
mations in Rd according to Table 1.

Neural networks may be used to define conformal fields [30],
where a conformal field on the Poincaré section is obtained from
a Lorentzian theory associated to a homogeneous neural network ar-
chitecture. There are three properties to ensure:

1. Homogeneity arising from the choice of architecture.

2. Lorentz-invariance in D+2 dimensions from an appropriately
chosen P (Θ).

3. Finiteness. The correlators must be well-defined.

Homogeneity and formal Lorentz-invariance is often straightforward,
requiring only a careful choice of architecture and P (Θ), but ensur-
ing that the correlators are well-defined is a non-trivial task. This
construction ensures that the conformal fields have conformally in-
vawriant correlators, a minimal definition for a CFT. Crossing sym-
metry is automatic in the four-point function, and induces non-trivial
constraints on the conformal block decomposition when the theory
has an operator product expansion. Interestingly, the Lorentzian
theory need not be translation invariant, as translation-invariance of
the conformal field emerges from the Lorentz symmetry itself.

Pedagogical Example. Here’s a simple non-unitary example with
∆ = −1 that proves the point. Let the architecture be

Φ(X) = Θ ·X (109)

where Θ ∼ P (Θ) is rotationally invariant in Euclidean (D+2)-
dimensions, giving a Lorentz-invariant theory upon Wick rotation
to RD+1,1. The two-point and four-point functions of Φ are given by

G(2)(x1, x2) = x2
12 (110)

G(4)(x1, x2, x3, x4) =
µ4

3

[
x2
12x

2
34 + x2

13x
2
24 + x2

14x
2
23

]
, (111)

where x2
ij := (xi − xj)

2 = −2Xi · Xj in the embedding space and
µ4 := µ4,i,i,i,i, the diagonal part of the moment tensor of P (Θ). In
the s-channel the four-point function is

G(4)(x1, x2, x3, x4) = g(u, v)x2
12x

2
34, (112)

where

g(u, v) =
µ4

3

(
1 +

1

u
+

v

u

)
, u =

x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

.

(113)
We emphasize that this is an exact expression for the conformal
four-point function of Φ. Using coordinates where u = zz̄, v = (1 −
z)(1 − z̄), as conventional in the bootstrap community, it may be
decomposed into 4D conformal blocks (CB) g∆,ℓ as

g(z, z̄) =
µ4

3

(
2g−2,0(z, z̄) +

4

3
g0,0(z, z̄)

)
, (114)

which tells us that the Φ × Φ OPE has a (−2, 0) operator and a
(0, 0) operator. An essential element of bootstrap-ology is that the
OPE relates coefficients of CBs to coefficients of three-point and two-
point functions. For instance, postulating that the (−2, 0) operator
is precisely Φ2, we compute

GΦΦΦ2(X, Y, Z) = E[ΘiΘjΘk1Θk2 ]X
iY jZk1Zk2 =

2µ4

3
(X · Z)(Y · Z),

GΦ2Φ2(X, Y ) = E[Θi1Θj1Θi2Θj2 ]X
i1Xj1Y i2Y j2 =

2µ4

3
(X · Y )2

(115)
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and the CBD coefficient is the three-point coefficient squared over the
two-point coefficient. Similarly, postulating that the (0, 0) operator
is Θ ·Θ =: O1,0, we have

GΦΦO1,0(X, Y, Z) = δi1j1E[Θi1Θj1ΘkΘj]X
kY j =

µ4

3
((D + 2) + 2)X · Y,

GO1,0O1,0(X, Y ) = δi1j1δi2j2E[Θi1Θj1Θi2Θj2 ] =
µ4

3
((D + 2)2 + 2(D + 2)),

(116)

and the CBD coefficient is recovered precisely in the case D = 4,
which agrees with the fact that we did a 4D conformal block de-
composition. The prescription also hold for G

(4)

Φ2 , which involves the
computation of a (simple) four-loop effect, yielding a quartic poly-
nomial in D that must be restricted to D = 4 to obtain the match.

3.3.4 NN-QM

In Section 3.2 we gave one definition of when a NN-FT is a QFT:
when it satisfies the Osterwalder-Schrader axioms, which guarantee
a Lorentzian continuation satisfying the Wightman axioms. Since
one of the Wightman axioms is Lorentz invariance, this is clearly too
strong for the general case, we would like to back up and ask for
more general notions of when a NN-FT is quantum.

The simplest place to carry out this exercise is in d = 1. The
following discussion is based on work to appear soon with C. Ferko.
We change notation such that

Rename: ϕθ(t) 7→ xθ(t), Feynman’s paths in QM.

We wish to understand circumstances under with NNs yield x(t)’s
exhibit features of (Euclidean) quantum mechanics.

Let us begin with a general stochastic process (SP) x(t) and ask

Question: Are there minimal requirements that a SP x(t)
must sastify to be Euclidean QM?

Of course, there are many essential notions in QM. Some minimal
requirements2 (that are not sufficient) are:

• Path Continuity: x(t) is continuous, no jumps!

• Finite Two-point Function: G(2)(t, s) is finite for all t, s.
This follows from the Källén-Lehmann spectral representation.

These are sufficient to ensure the assumptions of the Kosambi-
Karhunen-Loève theorem (KKL), which ensures that xt admits a
decomposition

xt =
∞∑
k=1

θkek(t) , (117)

where ek is a set of continuous, orthogonal real-valued functions on
[a, b] and θk are pairwise uncorrelated. This is a neural networks
with continuous, orthogonal neurons ek and weights θk.

Universality: A Euclidean QM theory can be written as a NN.

More generally, since the minimal requirements are not sufficient
for QM, there are SPs that satisfy the conditions — and therefore
admit a NN description — that are not quantum mechanical. NNs we
consider in practice are much different from the KKL decomposition,
but an appropriate single-layer network is always sufficient.
Of course, the minimal requirements are not sufficient, and one

might ask

Question: What are the sufficient conditions for QM?

There are weaker conditions, but certainly one version is d=1 OS
Axioms, which include

2Technically, the first requirement is mean-square continuity, which is stronger
and ensures continuity of paths and the two-point function.
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1. Reflection Positivity. For all ti > 0 and bounded F

⟨F (x(t1), . . . , x(tn)) (F (x(−t1), . . . , x(−tn)))
∗⟩ ≥ 0 (118)

2. Tranlation Invariance. xt = xt+a in distribution.

3. Symmetric. xt = x−t in distribution,

as well as some technical or trivial conditions suppressed for brevity.
We call such theories OS-QM.
The relationship between the different notions of SP is presented

in Figure 1. Within the space of all stochastic processes (SP), a
subset (NN-SP) admit a representation as a neural network. SPs
satisfying the minimal requirements admited a NN description and
are denoted NN-SP; those that are actually quantum mechanical are
denoted MQM. and therefore MQM ⊂ NN-SP. One might impose
additional restrictions upon minimal quantum models, such as the
Osterwalder-Schrader axioms (OS-QM) or another set of conditions
defining a notion of quantum mechanics of one’s choosing (QM’),
which carve out different subsets of MQM.

After establishing universality of the NN description, the focus of
our paper is on RP and OS-QM. We have two primary RP Mech-
anisms:

1. “Parameter Splitting”. The NN architecture has some pa-
rameters that control fluctuations on different sides of t = 0.
Together with a condition of the parameter density, this ensures
RP by a perfect square integrand. This is exemplified.

2. Markov property. It is well known that Markov → RP. A
Markov x(t) may be obtained by traditional means or by an
injective NN with Markovian weights θ(t).

Other important results include:

1. Deep NN-QM: A NN acting on any Markov process is RP,
and therefore sastifies a crucial condition for QM.

Figure 1: A Venn diagram illustrating the various relations between
different SPs and QM.

2. Numerical Examples in several cases require classic QM prop-
erties, e.g. the spectrum, non-trivial commutators, and Heisen-
berg uncertainty.

We hope to have this work out within a week of this meeting.

4 Recap and Outlook

In these lectures I discussed one angle on the physics of learning, the
relationship between field theory and neural networks. I will recap
them briefly, only an hour before the second lecture.
In the first lecture on Physics-for-ML, I argued that very ele-



Physics for AI Lecture Notes 19

mentary considerations in machine learning with neural networks
inevitably leads to field theoretic concepts. Specifically, since neural
network predictions depend on a random draw of parameters at ini-
tialization, one should integrate over all initializations to compute the
average prediction (one-point function) and covariance (connected
two-point function). Since learning depends on t, one should track
how these correlators evolve. I then turned to details of the statis-
tics, beginning with the NNGP correspondence, which shows that
many neural network architectures admit a large-N limit in which
the networks are draws from a Gaussian process. This means they
are described by a generalized free field theory, with statistics com-
pletely determined by the one-point and two-point functions. Non-
Gaussianities, which correspond to interactions, arise by violating
assumptions of the CLT. I then turned to the dynamics of neural
networks, which are governed by the Neural Tangent Kernel (NTK).
With certain scaling in the large-N limit, the NTK becomes frozen
and the frozen NTK at initialization governs the dynamics for all
time. However, nothing is being learned, and in particular late-time
features in the hidden dimensions are in a local neighborhood of
their initial values. I showed how a detailed N -scaling analysis al-
lows one to demand that network features and predictions update
non-trivially, leading to richer learning regimes known as dynamical
mean field theory or the maximal update parameterization.

In the second lecture, I discussed the NN-FT correspondence,
which provides a neural network approach to field theory. In this
framework, a field theory is defined by a neural network architecture
ϕθ and a probability density P (θ) on its parameters. This allows
one to compute correlation functions directly in parameter space,
without requiring an explicit action. I explained how Gaussian pro-
cesses arise naturally in the large-N , corresponding to generalized
free field theories. Interactions can be introduced by breaking sta-
tistical independence or considering finite-width corrections, leading
to non-Gaussian processes. I also discussed how cherished features
of field theories, such as symmetries, interactions, and conformal in-
variance, can be engineered in NN-FT. For example, I showed how
Euclidean symmetry can be built into the architecture and param-

eter distribution, and how ϕ4 theory can be realized by deforming
the parameter density of a free scalar NN-FT. Additionally, I in-
troduced the construction of conformal fields using neural networks,
leveraging the embedding formalism to ensure conformal invariance
of the correlators. Finally, I explored the connection between neural
networks and quantum mechanics (NN-QM). I demonstrated that
any Euclidean-time quantum mechanical theory can be represented
as a neural network, satisfying minimal requirements such as path
continuity and finite two-point functions. Reflection positivity, a key
feature of quantum mechanics, can be ensured through mechanisms
like parameter splitting or Markov processes. Classic QM results
may be recovered in numerical simulations.

A Central Limit Theorem

Let us recall a simple derivation of the Central Limit Theorem (CLT),
in order to better understand the statistics of neural networks. Con-
sider a sum of random variables

ϕ =
1√
N

N∑
i=1

Xi, (119)

with ⟨Xi⟩ = 0. The moments µr and cumulants κr are determined
by the moment generating function (partition function) Z[J ] = ⟨eJϕ⟩
and cumulant generating function W [J ] = logZ[J ], respectively, as

µr =

(
d

dJ

)r

Z[J ]

∣∣∣∣
J=0

(120)

κr =

(
d

dJ

)r

W [J ]

∣∣∣∣
J=0

. (121)

If the Xi are independent random variables, then the partition func-
tion factorizes Z∑

i Xi
[J ] =

∏
i ZXi

[J ], and the cumulant generating
function of the sum is the sum of the cumulant generating functions,
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yielding

W∑
i Xi

[J ] =
∑
i

WXi
[J ] (122)

κ
∑

Xi
r =

∑
i

κXi
r . (123)

If the Xi are identically distributed, then the cumulants κXi
r are the

same for all i and we account for the 1/
√
N appropriately, we obtain

κϕ
r =

κXi
r

N r/2−1
. (124)

This yields

lim
N→∞

κϕ
r>2 = 0, (125)

which is sufficient to show that ϕ is Gaussian in the large-N limit.
In physics language, cumulants are connected correlators, and (125)
means that Gaussian (free) theories have no connected correlators.
In neural networks we will be interested in studying certain Gaus-

sian limits. From this CLT derivation, we see two potential origins
of non-Gaussianity:

• 1/N-corrections from appearance in κϕ
r .

• Independence breaking since the proof relied on (122).
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