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These advances have largely been  
driven by increasing computational scale:

Kaplan et al., 2020

Deep learning has revolutionized AI:

Computer Vision

Jumper et al., 2021Vaswani et al., 2017Deng et al., 2009

Natural Language Processing

Despite the success, a fundamental question remains:

Scientific Modeling



What are the mathematical principles governing 
a neural network’s ability to generalize?



Implicit Bias Perspective: Overparameterized neural networks can memorize their training data, 
but the architecture and training process implicitly bias them toward simple generalizing solutions.

Maximum-Margin

Soudry et al., 2018

Low-rank / Sparse / Low-entropy

Chen et al., 2024

Benign Overfitting

Belkin et al., 2019

Two prevailing perspectives



Gabor Filters in First-layer Weights

Krizhevsky et al. (2012) Mikolov et al. (2013)

Meaningful word embeddings Mechanistic Interpretability

Nanda et al. (2023)

Two prevailing perspectives

Feature Learning Perspective: A neural network’s performance depends on its architecture’s 
ability to efficiently extract and compose task-relevant features from data.



Deep 

Learning

High-dimensional 
natural datasets

{(x1, y1), …, (xn, yn)}

Stochastic 
gradient-based 

optimization 
 ·θ = − ∇θℒ

Deep 
nonlinear 

architectures
f(x; θ)

Unraveling a complex interaction of three ingredients

Implicit Bias 

Perspective

Feature Learning 

Perspective



Q2: What mechanisms drive feature learning? 
What features do neural networks learn, and how.

{x, y}∇θℒ

Q1: What conditions enable feature learning? 
When and why does feature learning emerge. f(x; θ) ∇θℒ



What is a feature?

Informally, a feature is a representation of data that a model uses to make predictions.

Learning the right features is critical. Traditional ML relied on hand-crafted 
feature selection, while neural networks automatically learn features
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Not Linearly Separable



When Feature Learning Doesn’t Happen

Neural Tangent Kernel:

Convergence and Generalization in Neural Networks

Arthur Jacot

École Polytechnique Fédérale de Lausanne
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Imperial College London and École Polytechnique Fédérale de Lausanne
franckrgabriel@gmail.com
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Abstract

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian
processes in the infinite-width limit (16; 4; 7; 13; 6), thus connecting them to
kernel methods. We prove that the evolution of an ANN during training can also
be described by a kernel: during gradient descent on the parameters of an ANN,
the network function f✓ (which maps input vectors to output vectors) follows the
kernel gradient of the functional cost (which is convex, in contrast to the parameter
cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central
to describe the generalization features of ANNs. While the NTK is random at
initialization and varies during training, in the infinite-width limit it converges
to an explicit limiting kernel and it stays constant during training. This makes it
possible to study the training of ANNs in function space instead of parameter space.
Convergence of the training can then be related to the positive-definiteness of the
limiting NTK. We prove the positive-definiteness of the limiting NTK when the
data is supported on the sphere and the non-linearity is non-polynomial.
We then focus on the setting of least-squares regression and show that in the infinite-
width limit, the network function f✓ follows a linear differential equation during
training. The convergence is fastest along the largest kernel principal components
of the input data with respect to the NTK, hence suggesting a theoretical motivation
for early stopping.
Finally we study the NTK numerically, observe its behavior for wide networks,
and compare it to the infinite-width limit.

1 Introduction

Artificial neural networks (ANNs) have achieved impressive results in numerous areas of machine
learning. While it has long been known that ANNs can approximate any function with sufficiently
many hidden neurons (11; 14), it is not known what the optimization of ANNs converges to. Indeed
the loss surface of neural networks optimization problems is highly non-convex: it has a high number
of saddle points which may slow down the convergence (5). A number of results (3; 17; 18) suggest
that for wide enough networks, there are very few “bad” local minima, i.e. local minima with much

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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Jacot et al. (2018)

   Scaling 
width

f(x; θ) → f(x; θ0) + (θ − θ0)∇θ f(x; θ0)

On Lazy Training in Differentiable Programming
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Abstract

In a series of recent theoretical works, it was shown that strongly over-
parameterized neural networks trained with gradient-based methods could converge
exponentially fast to zero training loss, with their parameters hardly varying. In
this work, we show that this “lazy training” phenomenon is not specific to over-
parameterized neural networks, and is due to a choice of scaling, often implicit,
that makes the model behave as its linearization around the initialization, thus
yielding a model equivalent to learning with positive-definite kernels. Through a
theoretical analysis, we exhibit various situations where this phenomenon arises
in non-convex optimization and we provide bounds on the distance between the
lazy and linearized optimization paths. Our numerical experiments bring a critical
note, as we observe that the performance of commonly used non-linear deep con-
volutional neural networks in computer vision degrades when trained in the lazy
regime. This makes it unlikely that “lazy training” is behind the many successes of
neural networks in difficult high dimensional tasks.

1 Introduction

Differentiable programming is becoming an important paradigm in signal processing and machine
learning that consists in building parameterized models, sometimes with a complex architecture and
a large number of parameters, and adjusting these parameters in order to minimize a loss function
using gradient-based optimization methods. The resulting problem is in general highly non-convex.
It has been observed empirically that, for fixed loss and model class, changes in the parameterization,
optimization procedure, or initialization could lead to a selection of models with very different
properties [36]. This paper is about one such implicit bias phenomenon, that we call lazy training,
which corresponds to the model behaving like its linearization around the initialization.

This work is motivated by a series of recent articles [11, 22, 10, 2, 37] where it is shown that over-
parameterized neural networks could converge linearly to zero training loss with their parameters
hardly varying. With a slightly different approach, it was shown in [17] that infinitely wide neural
networks behave like the linearization of the neural network around its initialization. In the present
work, we argue that this behavior is not specific to neural networks, and is not so much due to
over-parameterization than to an implicit choice of scaling. By introducing an explicit scale factor,
we show that essentially any parametric model can be trained in this lazy regime if its output is
close to zero at initialization. This shows that guaranteed fast training is indeed often possible, but

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.
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Scaling 
initialization 

variance

*sufficiently wide for a finite training dataset and f(x; θ0) = 0

When a network becomes linear in :θ
feature map



A revealing experiment inspired by Chizat et al. (2019)

Wide two-layer student ReLU Network

f(x; θ) =
h

∑
k=1

ak max(w⊺
k x,0)

teacher neurons

initialization scale

student neuron  

(colored by sign of )

|ai |wi

ai

Narrow two-layer teacher ReLU Network

𝒟 = {(x1, y1), …, (xn, yn)}

Feature learning  student neurons aligning to teacher=



1 ≪ ∥aw∥Initialization Scale ∥aw∥∥aw∥ ≪ 1

2. At small-scale initialization, the student aligns to 
teacher, during which the loss has long plateaus.

1. At large-scale initialization, the student moves very 
little to quickly fit the data.



The relative scale also influences feature learning

Negative Relative Scale ∥w∥ ≫ |a |Positive Relative Scale ∥w∥ ≪ |a |



θ1

 f(x; θ)

  ∇θ f−η∇θℒ ∇f ℒ

ℒ(y, f(x; θ))

Space of Possible 
Functions

High-Dimensional 
Parameter Space

Performance Space

θ0

The different spaces where learning occurs



 Kij = Θ(xi, xj; θ)

 ·ℒ = − ∇ ̂yℒ⊺K(𝒟; θ)∇ ̂yℒ

 ℒ(θ0)

·θ = − ∇θℒ

θ0

The different spaces where learning occurs

Space of Possible 
Functions

High-Dimensional 
Parameter Space

 ·f = − ∑
j∈𝒟

Θ(x, xj; θ)∇f ℒ

f(x; θ0)
 Θ(x, x′ ; θ)

Neural Tangent Kernel The NTK quantifies how one gradient step with data point  affects the 
evolution of the networks’s output evaluated at another data point . 

x′ 

x
Θ(x, x′ ; θ) = ⟨∇θ f(x), ∇θ f(x′ )⟩

If there is feature learning, then the NTK must change!

Performance Space



Kernel Learning  
(Lazy Learning)

Feature Learning  
(Rich Learning)

When does feature learning emerge?

Feature learning Spectrum

Small-scale initialization Large-scale initialization

The NTK does not evolve The NTK does evolve

Exponential loss curvesSigmoidal loss curves



Why are small-scale initializations and sigmoidal loss 
curves related to the emergence of learning?

We will consider a minimal model — a single linear neuron

a ∈ ℝ

f(x; θ) = aw⊺x

w ∈ ℝd
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Neural Networks and Principal Component Analysis: 
Learning from Examples Without Local Minima 

PIERRE BALDI AND KURT HORNIK * 
University of California. San Diego 

(Received 18 May 1988; revised and accepted 16 August 1988) 

Abstract-We consider the problem of learning from examples in layered linear feed-forward neural networks 
using optimization methods, such as back propagation, with respect to the usual quadratic error function E of 
the connection weights. Our main result is a complete description of the landscape attached to E in terms of 
principal component analysis. We show that E has a unique minimum corresponding to the projection onto the 
subspace generated by the first principal vectors of a covariance matrix associated with the training patterns. All 
the additional critical points of E are saddle points (corresponding to projections onto subspaces generated by 
higher order vectors). The auto-associative case is examined in detail. Extensions and implications for the learning 
algorithms are discussed. 

Keywords-Neural networks, Principal component analysis, Learning, Back propagation. 

1. INTRODUCTION 

Neural networks can be viewed as circuits of highly 
interconnected units with modifiable interconnection 
weights. They can be classified, for instance, ac-
cording to their architecture, algorithm for adjusting 
the weights, and the type of units used in the circuit. 
We shall assume that the reader is familiar with the 
basic concepts of the field; general reviews, comple-
ments, and references can be found in Rumelhart, 
McClelland, and the PDP Research Group (1986a), 
Lippman (1987), and Grossberg (1988). 

The network architecture considered here is of the 
type often described in Rumelhart Hinton, and Wil-
liams (1986b), namely layered feed-forward net-
works with one layer of input units, one layer of 
output units, and one or several layers of hidden 
units. We assume that there are T input patterns X t 

(1 ::5 t ::5 T) and T corresponding target output pat-
terns Yt which are used to train the network. For this 
purpose, a quadratic error function is defined as usual 

'Permanent address: Institut fiir Statistik and Wahrscheinlich-
keitstheorie, Technische Universitat Wien, Wiedner Haupstr. 8-
10/107, A-1040 Wien, Austria. 

The final stages of this work were supported by NSF grant 
DMS-88003Z3 to P. B. 

Requests for reprints should be sent to Pierre Baldi, JPL 198-
330, California Institute of Technology. Pasadena, CA 91109. 
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to be: E = - F(x()112 where F is the current 
function implemented by the network. During the 
training phase, the weights (and hence F) are suc-
cessively modified, according to one of several pos-
sible algorithms, in order to reduce E. Back prop-
agation, the best known of such algorithms, is just a 
way of implementing a gradient descent method for 
E. The main thrust of this paper is not the study of 
a specific algorithm but rather a precise description 
of the salient features of the surface attached to E 
when the units are linear. 

Linear units are the simplest one can use in these 
circuits. They are often considered as uninteresting 
for: (a) only linear functions can be computed in 
linear networks (and most "interesting" functions 
are nonlinear); and (b) a network with several layers 
of linear units can always be collapsed into a linear 
network without any hidden layer by multiplying the 
weights in the proper fashion. 

As a result, nonlinear units are most commonly 
used: linear threshold gates or, when continuity or 
differentiability is required, units with a sigmoid in-
put-output function. In this setting, the results of 
numerous simulations have led several people to be-
lieve that descent methods, such as back propaga-
tion, applied to the error function E are not seriously 
plagued by the problem of local minima (either be-
cause global minima are found, either because the 
local minima encountered are "good enough" for 
practical purposes) and that, for instance, the solu-

Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks

Andrew M. Saxe (asaxe@stanford.edu)
Department of Electrical Engineering

James L. McClelland (mcclelland@stanford.edu)
Department of Psychology

Surya Ganguli (sganguli@stanford.edu)
Department of Applied Physics

Stanford University, Stanford, CA 94305 USA

Abstract

Despite the widespread practical success of deep learning methods, our theoretical under-
standing of the dynamics of learning in deep neural networks remains quite sparse. We
attempt to bridge the gap between the theory and practice of deep learning by systemati-
cally analyzing learning dynamics for the restricted case of deep linear neural networks.
Despite the linearity of their input-output map, such networks have nonlinear gradient de-
scent dynamics on weights that change with the addition of each new hidden layer. We
show that deep linear networks exhibit nonlinear learning phenomena similar to those seen
in simulations of nonlinear networks, including long plateaus followed by rapid transitions
to lower error solutions, and faster convergence from greedy unsupervised pretraining ini-
tial conditions than from random initial conditions. We provide an analytical description
of these phenomena by finding new exact solutions to the nonlinear dynamics of deep
learning. Our theoretical analysis also reveals the surprising finding that as the depth of
a network approaches infinity, learning speed can nevertheless remain finite: for a special
class of initial conditions on the weights, very deep networks incur only a finite, depth
independent, delay in learning speed relative to shallow networks. We show that, under
certain conditions on the training data, unsupervised pretraining can find this special class
of initial conditions, while scaled random Gaussian initializations cannot. We further ex-
hibit a new class of random orthogonal initial conditions on weights that, like unsupervised
pre-training, enjoys depth independent learning times. We further show that these initial
conditions also lead to faithful propagation of gradients even in deep nonlinear networks,
as long as they operate in a special regime known as the edge of chaos.

Deep learning methods have realized impressive performance in a range of applications, from visual object
classification [1, 2, 3] to speech recognition [4] and natural language processing [5, 6]. These successes have
been achieved despite the noted difficulty of training such deep architectures [7, 8, 9, 10, 11]. Indeed, many
explanations for the difficulty of deep learning have been advanced in the literature, including the presence of
many local minima, low curvature regions due to saturating nonlinearities, and exponential growth or decay
of back-propagated gradients [12, 13, 14, 15]. Furthermore, many neural network simulations have observed
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THE IMPLICIT BIAS OF DEPTH: HOW INCREMENTAL
LEARNING DRIVES GENERALIZATION

Daniel Gissin, Shai Shalev-Shwartz, Amit Daniely
School of Computer Science
The Hebrew University
Jerusalem, Israel
{daniel.gissin,shais,amit.daniely}@mail.huji.ac.il

ABSTRACT

A leading hypothesis for the surprising generalization of neural networks is that
the dynamics of gradient descent bias the model towards simple solutions, by
searching through the solution space in an incremental order of complexity. We
formally define the notion of incremental learning dynamics and derive the condi-
tions on depth and initialization for which this phenomenon arises in deep linear
models. Our main theoretical contribution is a dynamical depth separation re-
sult, proving that while shallow models can exhibit incremental learning dynam-
ics, they require the initialization to be exponentially small for these dynamics to
present themselves. However, once the model becomes deeper, the dependence
becomes polynomial and incremental learning can arise in more natural settings.
We complement our theoretical findings by experimenting with deep matrix sens-
ing, quadratic neural networks and with binary classification using diagonal and
convolutional linear networks, showing all of these models exhibit incremental
learning.

1 INTRODUCTION

Neural networks have led to a breakthrough in modern machine learning, allowing us to efficiently
learn highly expressive models that still generalize to unseen data. The theoretical reasons for this
success are still unclear, as the generalization capabilities of neural networks defy the classic statis-
tical learning theory bounds. Since these bounds, which depend solely on the capacity of the learned
model, are unable to account for the success of neural networks, we must examine additional proper-
ties of the learning process. One such property is the optimization algorithm - while neural networks
can express a multitude of possible ERM solutions for a given training set, gradient-based methods
with the right initialization may be implicitly biased towards certain solutions which generalize.

A possible way such an implicit bias may present itself, is if gradient-based methods were to search
the hypothesis space for possible solutions of gradually increasing complexity. This would suggest
that while the hypothesis space itself is extremely complex, our search strategy favors the simplest
solutions and thus generalizes. One of the leading results along these lines has been by Saxe et al.
(2013), deriving an analytical solution for the gradient flow dynamics of deep linear networks and
showing that for such models, the singular values converge at different rates, with larger values
converging first. At the limit of infinitesimal initialization of the deep linear network, Gidel et al.
(2019) show these dynamics exhibit a behavior of “incremental learning” - the singular values of the
model are learned separately, one at a time. Our work generalizes these results to small but finite
initialization scales.

Incremental learning dynamics have also been explored in gradient descent applied to matrix com-
pletion and sensing with a factorized parameterization (Gunasekar et al. (2017), Arora et al. (2018),
Woodworth et al. (2019)). When initialized with small Gaussian weights and trained with a small
learning rate, such a model is able to successfully recover the low-rank matrix which labeled the
data, even if the problem is highly over-determined and no additional regularization is applied. In
their proof of low-rank recovery for such models, Li et al. (2017) show that the model remains low-
rank throughout the optimization process, leading to the successful generalization. Additionally,

1

ar
X

iv
:1

90
9.

12
05

1v
2 

 [c
s.L

G
]  

28
 D

ec
 2

01
9

Implicit Regularization in Deep Matrix Factorization

Sanjeev Arora

Princeton University and Institute for Advanced Study
arora@cs.princeton.edu

Nadav Cohen

Tel Aviv University
cohennadav@cs.tau.ac.il

Wei Hu

Princeton University
huwei@cs.princeton.edu

Yuping Luo

Princeton University
yupingl@cs.princeton.edu

Abstract

Efforts to understand the generalization mystery in deep learning have led to the
belief that gradient-based optimization induces a form of implicit regularization, a
bias towards models of low “complexity.” We study the implicit regularization of
gradient descent over deep linear neural networks for matrix completion and sens-
ing, a model referred to as deep matrix factorization. Our first finding, supported by
theory and experiments, is that adding depth to a matrix factorization enhances an
implicit tendency towards low-rank solutions, oftentimes leading to more accurate
recovery. Secondly, we present theoretical and empirical arguments questioning
a nascent view by which implicit regularization in matrix factorization can be
captured using simple mathematical norms. Our results point to the possibility that
the language of standard regularizers may not be rich enough to fully encompass
the implicit regularization brought forth by gradient-based optimization.

1 Introduction

It is a mystery how deep neural networks generalize despite having far more learnable parameters than
training examples. Explicit regularization techniques alone cannot account for this generalization,
as they do not prevent the networks from being able to fit random data (see [52]). A view by which
gradient-based optimization induces an implicit regularization has thus arisen. Of course, this view
would be uninsightful if “implicit regularization” were treated as synonymous with “promoting gen-
eralization” — the question is whether we can characterize the implicit regularization independently
of any validation data. Notably, the mere use of the term “regularization” already predisposes us
towards characterizations based on known explicit regularizers (e.g. a constraint on some norm of the
parameters), but one must also be open to the possibility that something else is afoot.

An old argument (cf. [25, 29]) traces implicit regularization in deep learning to beneficial effects of
noise introduced by small-batch stochastic optimization. The feeling is that solutions that do not
generalize correspond to “sharp minima,” and added noise prevents convergence to such solutions.
However, recent evidence (e.g. [26, 51]) suggests that deterministic (or near-deterministic) gradient-
based algorithms can also generalize, and thus a different explanation is in order.

A major hurdle in this study is that implicit regularization in deep learning seems to kick in only
with certain types of data (not with random data for example), and we lack mathematical tools for
reasoning about real-life data. Thus one needs a simple test-bed for the investigation, where data
admits a crisp mathematical formulation. Following earlier works, we focus on the problem of
matrix completion: given a randomly chosen subset of entries from an unknown matrix W ⇤, the
task is to recover the unseen entries. To cast this as a prediction problem, we may view each entry
in W ⇤ as a data point: observed entries constitute the training set, and the average reconstruction
error over the unobserved entries is the test error, quantifying generalization. Fitting the observed
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Saddle-to-Saddle Dynamics in Deep Linear Networks:
Small Initialization Training, Symmetry, and Sparsity

Arthur Jacot 1 François Ged 1 Berfin Şimşek 1 Clément Hongler 1 Franck Gabriel 1

Abstract
The dynamics of Deep Linear Networks (DLNs)
is dramatically affected by the variance �2 of the
parameters at initialization ✓0. For DLNs of width
w, we show a phase transition w.r.t. the scaling �
of the variance �2 = w�� as w ! 1: for large
variance (� < 1), ✓0 is very close to a global min-
imum but far from any saddle point, and for small
variance (� > 1), ✓0 is close to a saddle point and
far from any global minimum. While the first case
corresponds to the well-studied NTK regime, the
second case is less understood. This motivates the
study of the case � ! +1, where we conjecture
a Saddle-to-Saddle dynamics: throughout train-
ing, gradient descent visits the neighborhoods of a
sequence of saddles, each corresponding to linear
maps of increasing rank, until reaching a sparse
global minimum. We support this conjecture with
a theorem for the dynamics between the first two
saddles, as well as some numerical experiments.

1. Introduction
In spite of their widespread usage, the theoretical under-
standing of Deep Neural Networks (DNNs) remains limited.
In contrast to more common statistical methods which are
built (and proven) to recover the specific structure of the
data, the development of DNNs techniques has been mostly
driven by empirical results. This has led to a great variety of
models which perform consistently well, but without a the-
ory explaining why. In this paper, we provide a theoretical
analysis of Deep Linear (Neural) Networks (DLNs), whose
simplicity makes them particularly attractive as a first step
towards the development of such a theory.

DLNs have a non-convex loss landscape and the behavior
of training dynamics can be subtle. For shallow networks,
the convergence of gradient descent is guaranteed by the
fact that the saddles are strict and that all minima are global

*Equal contribution 1EPFL,Switzerland. Correspondence to:
Arthur Jacot <arthur.jacot@netopera.net>.

(Baldi & Hornik, 1989; Kawaguchi, 2016; Lee et al., 2016;
2019b). In contrast, the deep case features non-strict saddles
(Kawaguchi, 2016) and no general proof of convergence
exists at the moment, though convergence to a global mini-
mum can be guaranteed in some cases (Arora et al., 2019a;
Eftekhari, 2020).

A recent line of work focuses on the implicit bias of DLNs,
and consistently reveals some form of incremental learn-
ing and implicit sparsity as in (Gissin et al., 2020). Di-
agonal networks are known to learn minimal L1 solutions
(Moroshko et al., 2020; Woodworth et al., 2020). With a
specific initialization and the MSE loss, DLNs learn the
singular components of the signal one by one (Saxe et al.,
2014; Advani & Saxe, 2017; Saxe et al., 2019; Gidel et al.,
2019; Arora et al., 2019b). Recently, it has been shown that
with losses such as the cross-entropy and the exponential
loss, the parameters diverge towards infinity, but end up
following the direction of the max-margin classifier w.r.t.
the Lp-Schatten (quasi)norm (Gunasekar et al., 2018a;b;
Soudry et al., 2018; Ji & Telgarsky, 2018; 2020; Chizat &
Bach, 2020; Lyu & Li, 2020; Moroshko et al., 2020; Yun
et al., 2021).

In parallel, recent works have shown the existence of two
regimes in large-width DNNs: a kernel regime (also called
NTK or lazy regime) where learning is described by the
so-called Neural Tangent Kernel (NTK) guaranteeing linear
convergence (Jacot et al., 2018; Du et al., 2019; Chizat &
Bach, 2018a; Arora et al., 2019c; Lee et al., 2019a; Huang
& Yau, 2019), and an active regime where the dynamics
is nonlinear (Chizat & Bach, 2018b; Rotskoff & Vanden-
Eijnden, 2018; Mei et al., 2018; 2019; Chizat & Bach, 2020).
For DLNs, both regimes can be observed as well, with
evidence that while the linear regime exhibits no sparsity,
the active regime favors solutions with some kind of sparsity
(Woodworth et al., 2020; Moroshko et al., 2020).

1.1. Contributions

We study deep linear networks x 7! A✓x of depth L � 1
and widths n0, · · · , nL, that is A✓ = WL · · ·W1 where
W1, . . . ,WL are matrices such that Wi 2 Rni⇥ni�1 and ✓ is
a vector that consists of all the (learnable) parameters of the
DLN, i.e. the components of the matrices W1, · · · ,WL. For
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A rescale symmetry — something all linear network analysis share

f(x; θ) = AWx

A ∈ ℝc×kW ∈ ℝk×d

Implications of this “rescale” symmetry:

• Minima of the loss are on smooth submanifolds

• Gradient property .A⊺ ∂ℒ
∂A

=
∂ℒ
∂W

W⊺

(A, W) ↦ (AG−1, GW)

 is symmetric under the 
action of  defined by:

f(x; θ)
GLk(ℝ)

• Conserved quantity under gradient flow:

d
dt (A⊺A − WW⊺) = 0



“Conserved” quantities exist throughout deep learning

Scale symmetry  
in weights before normalization

Translation symmetry  
in weights before softmax

Rescale symmetry 
between layers with ReLU

A version of Noether’s Theorem: Every continuous symmetry* of a network architecture has a 
corresponding conserved quantity under gradient flow. Projecting the gradient flow dynamics onto the 
vector field generating symmetry gives an ODE, whose solution is a conservation law.

d
dt ⟨θ, ∂αψ⟩ = 0

*satisfying a mild assumption

Emmy Noether (1882 - 1935)

This analogy is explored in Kunin et al. 2020 and Tanaka and Kunin, 2021.



Minimal model that transitions between rich & lazy

A single neuron trained on MSE  by gradient flow:ℒ =
1
2

∥y − aw⊺X⊺∥2

a ∈ ℝ

f(x; θ) = aw⊺x

w ∈ ℝd ·a = − w⊺ (X⊺Xaw − X⊺y), a(0) = a0,

·w = − a (X⊺Xaw − X⊺y), w(0) = w0 .

The initialization determines 

,  

which constrains trajectories.

δ = a2
0 − ∥w0∥2

Balanced δ = 0 Upstream δ > 0Downstream δ < 0

minima manifold 
aw = β*

Saddle point 
a = 0, w = 0

Saddle points
a = 0, w⊺β* = 0

Equivalent 
initializations aw = β0



Derive dynamics of NTK :K = X(a2Id + ww⊺)X⊺

We can derive exact solutions when we 
assume whitened input .X⊺X = Id

·ϕ =
2μ∥β*∥

δ2 + 4μ2 − δ
(1 − ϕ2)·μ = δ2 + 4μ2(ϕ∥β*∥ − μ)

Lazy — when , essentially initialized at the 
minima manifold

δ ≫ 0

Rich — when  and small norm, then 
initialized near the saddle at origin.

δ = 0

Delayed rich — when  and , the 
trajectory goes near the saddle .

δ ≪ 0 ϕ(0) ≈ 0
w⊺β* = a = 0

Norm μ = a∥w∥ Cosine Angle ϕ =
w⊺β*

∥w∥∥β*∥

Limitation — all initializations 
converge to the same solution.

Bernoulli ODE Riccati ODE



Rich LazyFeature learning Spectrum

Initialized near a 
 minimum

Initialized near a 
 saddle

Parameter Space 
Explanation



Parameter Space: Saddle-to-Saddle Dynamics

Saddle-to-Saddle conjecture: In the vanishing initialization limit, gradient descent visits a sequence of saddles, 
each corresponding to linear maps of increasing rank, until reaching a sparse global minimum.

Jacot et al., 2022, study deep linear networks   with width  initialized with variance . 
They observe a phase transition in  as :

f(x; θ) = WL…W1x w σ2 = w−γ

γ w → ∞

γ = 1

Mean Field Limit

1 − 1/L ≤ γ < 1γ > 1

NTK RegimeSaddle-to-Saddle
(  is close to saddle and far from minima)θ0 (  is close to minima and far from saddle)θ0

Jacot et al., 2022 Boursier et al., 2022 von Oswald et al., 2023

Linear Networks Two-layer ReLU Networks Attention-only Transformer



We can derive a self-consistent equation for the dynamics of , 

 

which is a preconditioned gradient flow. The NTK matrix .

β = aw

·β = −
δ2 + 4∥β∥2 + δ

2
Id +

δ2 + 4∥β∥2 − δ

2
ββ⊺

∥β∥2

M

∇βℒ,

K = XMX⊺

A function space perspective of our minimal model

·∥β∥ = − δ2 + 4∥β∥2⟨ ̂β, ∇βℒ⟩ · ̂β = −
δ2 + 4∥β∥2 + δ

2∥β∥
P⊥

β ∇βℒ

Radial ∥β∥ Directional ̂β A separation of the timescales in dynamics

δ ≪ 0 δ = 0 δ ≫ 0

Fast

Slow Fast

Fast∝ ∥β∥

O(1)

·∥β∥

· ̂β

Strength — this holds even when  is low-rank.X⊺X



Lazy — when , , akin to linear regression.δ ≫ 0 M ≈ δId

Rich — when , , akin to to silent alignment 

(Atanasov et al. 2021).

δ = 0 M = ηaηw∥β∥(Id+
ββ⊺

∥β∥2 )

Delayed rich — when , , projected gradient descent — 

initially lazy followed by rich

δ ≪ 0 M ≈ |δ | ββ⊺

∥β∥2

Among the many interpolating solutions which one do we converge to?

encourage minimum norm preserve initialization β0

Radial dominated dynamics

Directional dominated dynamics



slow norm, fast direction 

“align then fit”

fast norm, slow direction 

“fit”

Function Space 
Explanation

Rich LazyFeature learning Spectrum

Initialized near a 
 minimum

Initialized near a 
 saddle

Parameter Space 
Explanation



Function Space: Quantization in ReLU Networks
Maennel et al., 2018 observed that two-layer ReLU networks from small initializations ( ), the first-layer 
weights concentrate along fixed directions determined by the training data, irrespective of network width.

α ≪ 1

“Empirical observation in 1d is that the ReLU kinks move while the training loss stays approximately constant, 
and they align with each other.” Maennel et al., 2018

α = 0.1 α = 0.3 α = 0.5 α = 0.7

Many subsequent studies (Phuong and Lampert, 2020, Lyu et al., 2021, Boursier et al., 2022, Min et 

al., 2023, Wang and Ma, 2024) have observed distinct alignment and fitting phases.

Min et al., 2023



Input 1 Input 1

O
ut

pu
t

O
ut

pu
t

Input 2

Input 2

norm is fast & direction is slow 

“fit”

norm is slow & direction is fast 

“align then fit”

2D analog of Maennel et al. observation

Feature Learning Kernel Learning



Part 2: What mechanisms drive feature learning? 
What features do neural networks learn, and how.

{x, y}∇θℒ

Part 1: What conditions enable feature learning? 
When and why does feature learning emerge. f(x; θ) ∇θℒ

When: Small-scale initializations where the NTK evolves

Why: Saddle-to-saddle dynamics with fast directions and slow norm



Epochs

Lo
ss

Loss

Jump Times
Loss Levels

τ1 τ2 τ3 τ4 τ5 τ6

ℓ6

ℓ5

ℓ4

ℓ3

ℓ2

ℓ1

Can we determine the fixed 
points of alignment from data?

f(x; θ) ≈ 0 ⟹ ∇f ℒ ≈ − y

Can we predict loss levels and 
jump times of saddle-to-saddle?

Parameter Space Function Space



TL;DR: We conjecture that two-layer neural networks with a vanishing 
initialization alternates between maximizing a utility function over dormant 

neurons and minimizing a cost function over active neurons



Diagonal Linear Piecewise Linear Modular AdditionGeneral Framework
(Section 3) (Section 4) (Section 5) (Section 6)

Utility maximization
(dormant neurons)

Cost minimization
(active neurons)

Deep Residual
(Section 7)

...

+

... ...

+

...

... ...

...

+

...

Loss Loss

+

+

Epoch (log scale) Epoch (log scale)

Loss

Epoch (log scale)

Loss

Epoch

...

+

...



Alternating Gradient Flows

r(x; Θ) = y(x) − f(x; Θ) ∈ ℝc,

The neurons only “interact” through the residual:

r(x; Θ) → y(x)

In the vanishing limit (because norm dynamics are slow) the residual becomes piecewise constant

f(x; Θ) =
H

∑
i=1

fi(x; θi)

A two-layer homogeneous ( ) network composed as a sum of “neurons”:σ(αz) = ακ−1σ(z)

fi(x; θi) = aiσ(w⊺
i x)

σ θi = (wi, ai)

By the homogeneity of , we can express it as the norm weighted sumf(x; Θ)

f(x; Θ) =
H

∑
i=1

∥θi∥κ fi (x;
θi

∥θi∥ )



These dynamics breaks down as soon as a neuron activates by crossing  — the residual cannot be 
constant. For each neuron, we can solve for its jump time , using a path integral of its accumulated utility :

∥θi∥ = Θ(1)
τi 𝒮i(t)

τi = inf t > 0 𝒮i(t) =
−log ∥θi(0)∥ if κ = 2,

−
∥θi(0)∥2−κ− 1

2 − κ if κ > 2.
𝒮i(t) = ∫

t

0
κ�̂�i(s)dswhere

�̂�i(θ; r) = 𝔼x [⟨fi (x;
θ

∥θ∥ ), r(x)⟩]

For a fixed residual , we define the normalized utility function, 
, for each neuron as:

r(x)
𝒰 : ℝm → ℝ

d
dt

θi

∥θi∥
= ∥θi∥κ−2P⊥

θi
∇θ�̂�i,

d
dt

∥θi∥ = κ∥θi∥κ−1�̂�i .

which drives the directional and radial dynamics for each neuron 
independently

Neuron 1
Neuron 2
Neuron 3
Activates



We partition the set of neurons into dormant set (still near the 
origin) and active set (left the neighborhood of the origin).

The process repeats until all dormant neurons are either active or the residual is zero.

Active Set

Dormant Set

The active neurons are all “aware” of each other and work collectively to quickly minimize the loss 
restricted to the active set:

ℒ𝒜(θ𝒜) =
1
2

𝔼x y(x) − ∑
i∈𝒜

fi(x; θi)
2

*It is possible for an active neuron to become 
dormant again when minimizing the restricted loss.

The active set equilibrates at a critical point , then a new residual is computed, which is a saddle point 
of the original loss.

θ*𝒜

r(x) = y(x) − ∑
i∈𝒜

fi(x; θ*i ) θ*𝒜 ∈ Crit(ℒ𝒜) ⟹ (θ*𝒜,0) ∈ Crit(ℒ)



Neuron 1 Neuron 2 Neuron 3 Explode

Cost minimization
over active neurons 

is fast and occurs at large scales

Utility maximization 
over dormant neurons
is slow and occurs at small scales

Epoch

Loss

Alternating Gradient Flows Framework

Initialize: 𝒟 = [H], 𝒜 = {}, r(x) = y

For each i ∈ 𝒟,
maximize 𝒰i(θi, r)
subject to ∥θi∥ = 1.

Utility Maximization:

Transition neuron with smallest jump time 
 to active set.τi

Update residual and if necessary return 
neurons to dormant set.

minimize ℒ(Θ)
subject to ∥θi∥ = 0, ∀i ∈ 𝒟,

∥θi∥ ≥ 0, ∀i ∈ 𝒜 .

Cost Minimization:

Termination: When  or 𝒟 = {} r(x) = 0

Conjecture: With vanishing initialization, gradient flow in two-layer 
homogeneous networks follows a discrete trajectory transitioning 
between saddles, with the order and time determined by AGF.



f(x; Θ) =
H

∑
i=1

fi(x; θi)

A two-layer linear network as a sum of  neurons:H

fi(x; θi) = aiw
⊺
i x

θi = (ai, wi)

Let’s assume  such that its only the input-output cross-covariance  that need to be learnedX⊺X = Id X⊺Y

1: AGF for linear networks

Utility maximization is a Rayleigh quotient problem, resulting in the top left/right singular vector of Y⊺X = UΣV⊺

maximize a⊺
i Y⊺Xwi

subject to ∥ai∥2 + ∥wi∥2 = 1.
⟹ (a*i , w*i ) ∝ (u1, v1)

𝒰i(θ; r) = 𝔼x [⟨aiw
⊺
i x, r(x)⟩] = a⊺

i 𝔼x [yx⊺] wi = a⊺
i Y⊺Xwi

At initialization, the residual is , and then the utility is the bi-linear producty(x)



τi ≈ −
log(∥θi(0)∥)

σ1
.

We can estimate the accumulated utility , 
and thus the jump time as

𝒮i(t) ≈ κ𝒰*i t

After cost minimization, , thus the 
new utility will be computed with the matrix,

f(x; Θ) = u1σ1v
⊺
i x

then the second top singular vectors are learned and it 
repeats recursively.

,Y⊺X − u1σ1v
⊺
1

Li et al. 2020 proved that all two-layer matrix factorization 
problems, i.e. , gradient flow with infinitesimal 
initialization is mathematically equivalent to a simple 
heuristic rank minimization algorithm.

X⊺X ≠ Id

The AGF framework is this algorithm, once you replace 
the top eigenvector calculation as maximizing utility.



2. AGF for diagonal linear networks
A diagonal linear network trained on MSE ℒ =

1
2

∥y − (u ⊙ v)⊺X⊺∥2

f(x; θ) = (u ⊙ v)⊺x

v ∈ ℝdu ∈ ℝd

Proceedings of Machine Learning Research vol 125:1–39, 2020 33rd Annual Conference on Learning Theory
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Abstract
A recent line of work studies overparametrized neural networks in the “kernel regime,”

i.e., when during training the network behaves as a kernelized linear predictor, and thus,

training with gradient descent has the effect of finding the corresponding minimum RKHS

norm solution. This stands in contrast to other studies which demonstrate how gradient

descent on overparametrized networks can induce rich implicit biases that are not RKHS

norms. Building on an observation by Chizat et al. (2019), we show how the scale of
the initialization controls the transition between the “kernel” (aka lazy) and “rich” (aka

active) regimes and affects generalization properties in multilayer homogeneous models. We

provide a complete and detailed analysis for a family of simple depth-D linear networks

that exhibit an interesting and meaningful transition between the kernel and rich regimes,

and highlight an interesting role for the width of the models. We further demonstrate this

transition empirically for matrix factorization and multilayer non-linear networks.

1. Introduction

A string of recent papers study neural networks trained with gradient descent in the “kernel
regime.” They observe that, in a certain regime, networks trained with gradient descent
behave as kernel methods (Jacot et al., 2018; Daniely, 2017; Yang, 2019). This allows one
to prove convergence to zero error solutions in overparametrized settings (Li and Liang,
2018; Du et al., 2018, 2019; Allen-Zhu et al., 2018; Zou et al., 2018; Allen-Zhu et al., 2019;

c� 2020 B. Woodworth, S. Gunasekar, J.D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry & N. Srebro.
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Implicit Bias, Large Stepsizes and Edge of Stability
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Abstract

In this paper, we investigate the impact of stochasticity and large stepsizes on the
implicit regularisation of gradient descent (GD) and stochastic gradient descent
(SGD) over 2-layer diagonal linear networks. We prove the convergence of GD
and SGD with macroscopic stepsizes in an overparametrised regression setting and
provide a characterisation of their solution through an implicit regularisation prob-
lem. Our characterisation provides insights on how the choice of minibatch sizes
and stepsizes lead to qualitatively distinct behaviors in the solutions. Specifically,
we show that for sparse regression learned with 2-layer diagonal linear networks,
large stepsizes consistently benefit SGD, whereas they can hinder the recovery of
sparse solutions for GD. These effects are amplified for stepsizes in a tight window
just below the divergence threshold, known as the "edge of stability" regime.

1 Introduction

The stochastic gradient descent algorithm (SGD) [51] is the foundational algorithm for almost all
neural network training. Though a remarkably simple algorithm, it has led to many impressive
empirical results and is a key driver of deep learning. However the performances of SGD are quite
puzzling from a theoretical point of view as (1) its convergence is highly non-trivial and (2) there
exist many global minimums for the training objective which generalise very poorly [66].

To explain this second point, the concept of implicit regularisation has emerged: if overfitting is
harmless in many real-world prediction tasks, it must be because the optimisation process is implicitly
favoring solutions that have good generalisation properties for the task. The canonical example is
overparametrised linear regression with more trainable parameters than number of samples: although
there are infinitely many solutions that fit the samples, GD and SGD explore only a small subspace of
all the possible parameters. As a result, it can be shown that they implicitly converge to the closest
solution in terms of the `2 distance, and this without explicit regularisation [66, 24].

Currently, most theoretical works on implicit regularisation have primarily focused on continuous
time approximations of (S)GD where the impact of crucial hyperparameters such as the stepsize
and the minibatch size are ignored. One such common simplification is to analyse gradient flow,
which is a continuous time limit of GD and minibatch SGD with an infinitesimal stepsize. By
definition, this analysis does not capture the effect of stepsize or stochasticity. Another approach
is to approximate SGD by a stochastic gradient flow [60, 48], which tries to capture the noise and
the stepsize using an appropriate stochastic differential equation. However, there are no theoretical
guarantees that these results can be transferred to minibatch SGD as used in practice. This is a
limitation in our understanding since the performances of most deep learning models are often
sensitive to the choice of stepsize and minibatch size. The importance of stepsize and SGD minibatch
size is common knowledge in practice and has also been systematically established in controlled
experiments [36, 42, 20].

⇤Denotes equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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Abstract

Understanding the implicit bias of training algorithms is of crucial importance in order to

explain the success of overparametrised neural networks. In this paper, we study the dynamics

of stochastic gradient descent over diagonal linear networks through its continuous time version,

namely stochastic gradient flow. We explicitly characterise the solution chosen by the stochastic

flow and prove that it always enjoys better generalisation properties than that of gradient flow.

Quite surprisingly, we show that the convergence speed of the training loss controls the magnitude

of the biasing effect: the slower the convergence, the better the bias. To fully complete our

analysis, we provide convergence guarantees for the dynamics. We also give experimental results

which support our theoretical claims. Our findings highlight the fact that structured noise can

induce better generalisation and they help explain the greater performances of stochastic gradient

descent over gradient descent observed in practice.

1 Introduction

Understanding the performance of neural networks is certainly one of the most thrilling challenges
for the current machine learning community. From the theoretical point of view, progress has been
made in several directions: we have a better functional analysis description of neural networks [3]
and we steadily understand the convergence of training algorithms [29, 10] as well as the role of
initialisation [20, 12]. Yet there remain many unanswered questions. One of which is why do the
currently used training algorithms converge to solutions which generalise well, and this with very
little use of explicit regularisation [39].

To understand this phenomenon, the concept of implicit bias has emerged: if over-fitting is
benign, it must be because the optimisation procedure converges towards some particular global
minimum which enjoys good generalisation properties. Though no explicit regularisation is added,
the algorithm is implicitly selecting a particular solution: this is referred to as the implicit bias
of the training procedure. The implicit regularisation of several algorithms has been studied, the
simplest and most emblematic being that of gradient descent and stochastic gradient descent in
the least-squares framework: they both converge towards the global solution which has the lowest

1
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Raphaël Berthier raphael.berthier@epfl.ch

EPFL

Lausanne, Switzerland

Abstract

Diagonal linear networks (DLNs) are a toy simplification of artificial neural networks; they
consist in a quadratic reparametrization of linear regression inducing a sparse implicit
regularization. In this paper, we describe the trajectory of the gradient flow of DLNs in
the limit of small initialization. We show that incremental learning is e↵ectively performed
in the limit: coordinates are successively activated, while the iterate is the minimizer of
the loss constrained to have support on the active coordinates only. This shows that the
sparse implicit regularization of DLNs decreases with time. This work is restricted to the
underparametrized regime with anti-correlated features for technical reasons.

Keywords: diagonal linear networks, incremental learning, saddle-to-saddle dynamics,
implicit bias, Lotka-Volterra

1 Introduction

Artificial neural networks are the state of the art for many machine learning tasks (Le Cun
et al., 2015); however, we lack theoretical understanding of this success (Zhang et al., 2021).
Indeed, the parametrization of neural networks induces a non-convex loss, and consequently
it is challenging to analyze the optimization error of gradient descent methods. Moreover,
neural networks can be successful even without any (explicit) regularizer; this challenges
the statistical wisdom in overparametrized settings.

Recent research suggests that these two problems are intertwined: through its non-
convex parametrization, the gradient descent dynamics of neural networks induce an implicit
regularization that controls the statistical performance (Bartlett et al., 2021). However, this
phenomenon is di�cult to describe because it is a joint e↵ect of the parametrization, the
gradient descent dynamics and the initialization.

As a consequence, theoretical research has focused on studying implicit regularization
in toy simplifications of neural networks (Soudry et al., 2018; Gunasekar et al., 2017; Li
et al., 2018; Chizat and Bach, 2020; Li et al., 2020). We are interested in an extreme
simplification, called diagonal linear networks (DLNs) (Vaskevicius et al., 2019; Zhao et al.,
2019; Woodworth et al., 2020; HaoChen et al., 2021; Li et al., 2021; Azulay et al., 2021;
Pesme et al., 2021; Pillaud-Vivien et al., 2022; Nacson et al., 2022; Chou et al., 2023).
In fact, it is only a linear regression where regressors ✓i are parametrized quadratically;
specifically, in this paper, we parametrize ✓i = u2i /4. We then perform a gradient descent in
terms of ui and not ✓i (see Section 2.1 for more details). This quadratic reparametrization
is loosely argued to have an e↵ect similar to the composition of two layers in a neural
network. When started from a small initialization, DLNs were rigorously shown to enforce
an implicit sparse regularization; in an overparametrized setting, DLNs converge to a sparse
interpolator.

©2023 Raphaël Berthier.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.
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Gissin et al. 2019, Woodworth et al. 2020, Pesme et al. 2021, Even et al. 2023, Berthier 2023, Papazov et al. 2024 

We consider gradient flow dynamics from initialization .u = α1, v = 0

𝒮i(t + τ*) =
1
2

log ( cosh(4𝒰*i (t)τ* + ci(t))
cosh(ci(t)) )

We can get exact expression for accumulated utility

In the limit , AGF converges to the same 
sequence found by Pesme and Flammarion, 2023. 

α → 0

�̂�i(ui, vi; r) =
1
n

n

∑
j=1

uiviXijrj = − uivi ∇βi
ℒ(βθ)

The utility for each coefficient is: 



Unaligned  X⊺X

Coordinate-aligned X⊺X

= theory

= theory



3. AGF for quadratic networks trained on modular addition

Figure 2 from Morwani et al. 2023

a + b mod 5

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

(a + b) mod p = arg maxc ∈ ℤp {cos (2πk
a + b − c

p )}
For  and , thena, b ∈ ℤp k ∈ ℤp\{0}



Neurons specialize to a specific frequency

Learns label mean



No saddles with a one-hot encoding:

 Saddles with a correlated encoding:



Cosine waves maximize the utility function

We prove that the utility-maximizing unit vectors are cosine waves at the dominant 
frequency of the encoding vector.



During cost minimization, multiple neurons collaborate

With  neurons the network cannot 
learn to remove the dominant 
frequency from the residual

< 6

During the cost minimization step, the neurons grow in norm and specialize in their phase shifts.



1. Often large spikes and instability 
follow cost minimization — Adam 
smooths them.

2. Often the network consistently 
uses 6 neurons per frequency — 
hinting at a sparsity bias.

Putting it together



Future directions for AGF

1. Consider other theoretical settings for AGF, such as Multi-index model.

2. Extending AGF to deeper networks.

3. Using AGF as an alternative optimizer to SGD.

0. Finish the pre-print.



Part 2: What mechanisms drive feature learning? 
What features do neural networks learn, and how. {x, y}∇θℒ

Part 1: What conditions enable feature learning? 
When and why does feature learning emerge. f(x; θ) ∇θℒ
When: Small-scale initializations where the NTK evolves

Why: Saddle-to-saddle dynamics with fast directions and slow norm

What: Directions that maximize the utility function.

How: Through an iterative maximization-minimization process



Thank you! 
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