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Deep learning has revolutionized Al:

Computer Vision Natural Language Processing
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These advances have largely been g °
driven by increasing computational scale: g,
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Despite the success, a fundamental question remains:
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What are the mathematical principles governing
a neural network’s ability to generalize?



Two prevailing perspectives

Implicit Bias Perspective: Overparameterized neural networks can memorize their training data,
but the architecture and training process implicitly bias them toward simple generalizing solutions.
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Two prevailing perspectives

Feature Learning Perspective: A neural network’s performance depends on its architecture's

ability to efficiently extract and compose task-relevant features from data.

Gabor Filters in First-layer Weights Meaningful word embeddings Mechanistic Interpretability
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Unraveling a complex interaction of three ingredients

Deep
Implicit Bias nonlinear Feature Learning
. architectures .
Perspective (x; 0) Perspective

Stochastic
gradient-based
optimization
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High-dimensional
natural datasets



Q1: What conditions enable feature learning?

When and why does feature learning emerge. J(x: 0) VoL
Q2: What mechanisms drive feature learning?

Vo XY}
What features do neural networks learn, and how.



What is a feature?

Informally, a feature is a representation of data that a model uses to make predictions.
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Learning the right tfeatures is critical. Traditional ML relied on hand-crafted
feature selection, while neural networks automatically learn features




When Feature Learning Doesn’t Happen

When a network becomes linearin 8:  f(x;0) = f(x;6,) + (0 — 6,) Vo [(x; 0p)
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A revealing experiment inspired by Chizat et al. (2019)

Wide two-layer student RelLU Network

0.16 . teacher neurons
h 0.08
flx;0) = ) a, max(w]x,0)
k=1 N
EN 0.00
A
initialization scale
—0.08 "
Narrow two-layer teacher ReLU Network student neuron | a;|w,
./ (colored by sign of a))
—0.16 :
J 9= {(xlayl)a“'a(xnayn)}

—>

Feature learning = student neurons aligning to teacher
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The relative scale also influences feature learning

Positive Relative Scale ||w]|| < | a]| Negative Relative Scale ||[w|| > |a]
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The different spaces where learning occurs

High-Dimensional Space of Possible Performance Space

"arameter Space Functions

f(x; 0)

Z(y, f(x;0))

Vof V, &




The different spaces where learning occurs

High-Dimensional Space of Possible Performance Space

"arameter Space Functions

f==) OCx:0)V,Z

JED

N ey ra‘ Tangen-t Ke rne\ The NTK gquantities how one gradient step with data point x" affects the
evolution of the networks’s output evaluated at another data point x.
O(x, x5 0) = (Vg flx), Vo flx))

It there is feature learning, then the NTK must change!



When does teature learning emerge?

Feature Learning

(Rich Learning)

The NTK does evolve The NTK does not evolve

Kernel Learning
(Lazy Learning)

r

Small-scale initialization

~

Large-scale initialization

.

Sigmoidal loss curves

~

Exponential loss curves




Why are small-scale initializations and sigmoidal loss

curves related to the emergence of learning?

We will consider a minimal model — a single linear neuron




Linear networks — linear in input x, but nonlinear in parameters ¢
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A rescale symmetry — something all linear network analysis share

Implications of this “rescale” symmetry:

® Minima of the loss are on smooth submanifolds

Jx: 0) = AWx e Gradient property A WT.
0A oW

f(x; 0) is symmetric under the

ti t GL,(R) defined by:
action ot GL4(R) defined by ® Conserved quantity under gradient flow:

(A, W) > (AG~!, GW)

% (ATA = WWT) =0



"Conserved” quantities exist throughout deep learning

Translation symmetry Scale symmetry Rescale symmetry
in weights before softmax in weights before normalization between layers with RelLU
A= A=10"*  A=10"°% A=0 A=10"*  A=10"°
0.30 { e _‘T 0.45- ~e | 2
= 0.15; = 0301 i
= 0.00E N N
0301 00l E 015 1= - '
51 3 5 461 23 301 3 5 3 T3 461 3336133 4 o1 3 35 401 335 461 %3 3
Time (1 X steps) Time (1 X steps) Time (7 X steps)

A version of Noether’s Theorem: Every continuous symmetry® of a network architecture has a
corresponding conserved quantity under gradient flow. Projecting the gradient flow dynamics onto the
vector field generating symmetry gives an ODE, whose solution 1s a conservation law.

d

o0, >=o
dt< ’

*satisfying a mild assumption

This analogy is explored in Kunin et al. 2020 and Tanaka and Kunin, 2021.

Emmy Noether (1882 - 1935)



Minimal model that transitions between rich & lazy

1
A single neuron trained on MSE £ = 5||y — awTXT||? by gradient flow:

a=—wl (XTXaw — XTy), a(0) = a,,

f( (9) , Ww=—a (XTXaw — XTy), w(0) = w,.
x;0) =awlx

Equivalent minima manifold

initializations aw = f3, aw = P

The initialization determines

2
6 = ag — |lwll*

aoo | aoo |

which constrains trajectories. 15|

3.0 3.0

3.0—3.0

Downstream 0 < 0 Upstream 6 > 0



WT,B*

= Cosine Angle ¢ =
We can derive exact solutions when we Norm = aljw] le ¢ [[wll]
assume whitened input XX =1, \<
Limitation — all initializations . 5 5 b = 2|\ (1 — ¢?)
converge to the same solution. H= \/5 T @A = 1) \ 0%+ 4u? -6
Bernoulli ODE Riccati ODE

Kernel Distance S(O, t)

0.8 "
/ Derive dynamics of NTK K = X(azld + wwhHXT:
0.6 Lazy — when 0 > 0, essentially initialized at the
minima manifold
0.4
// — when 0 = 0 and small norm, then
0.2 '/ initialized near the saddle at origin.
',"/
0.0 =

e Delayed rich — when 6 <« 0 and ¢(0) = 0, the
trajectory goes near the saddle wif. =a = 0.




Initialized near a Parameter Space Initialized near a
saddle Exp‘anation minimum

RN o




Parameter Space: Saddle-to-Sadadle Dynamics

Jacot et al., 2022, study deep linear networks f(x;0) = W;...W,x with width w initialized with variance o’ =

w7,

They observe a phase transition in y as w — oo:

y > 1 y =1 I—1/L<y<1
Saddle-to-Saddle Mean Field Limit NTK Regime
(6, is close to saddle and far from minima) (6, is close to minima and far from saddle)

Saddle-to-Saddle conjecture: In the vanishing initialization limit, gradient descent visits a sequence of saddles,

each corresponding to linear maps of increasing rank, until reaching a sparse global minimum.

Linear Networks Two-layer ReLU Networks Attention-only Transformer
== : 1.0 1 055 7
10° |, \ = (D 1 step
| 0s- 0.507 == TF 2 layers
107 0.45 -
1072 = 06 . 0.40 -
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'LZ) 103 'q 0.4 - — 035 N
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107¢ 0.2 1
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0.0 ! ! ! ! ! ! ! ! ; 020 T T T T T
| . | . | 0 2500 5000 7500 1000.0 12500 15000 17500 20000 0 10000 20000 30000 40000
0 5000 10000 it;;(ziooons 20000 25000 30000 Iterations Training steps

Jacot et al., 2022 Boursier et al., 2022 von Oswald et al., 2023



A function space perspective of our minimal model

1.2-

We can derive a self-consistent equation for the dynamics of f = aw,

VEHABIE+5 A& +ABIP =5 gy
I, 5
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M
which is a preconditioned gradient flow. The NTK matrix K = XMXT.

Strength — this holds even when XX is low-rank.
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Radial dominated dynamics

Directional dominated dynamics

(Atanasov et al. 2021).

Delayed rich —when 6 < 0, M ~ |5|
initially lazy followed by rich

IIﬁII2 '

Among the many interpolating solutions which one do we converge to?

Theorem 3.1 (Extending Theorem 2 in Azulay et al. [9]). For a single hidden neuron linear network,

for any § € R, and initialization By such that B(t) # 0 for all t > 0, if the gradient flow solution
B(00) satisfies X (00) = y, then,

B(oo) = al;ggglin Us(8) — ¢6 ||50|| 5 st. XB=y )
c d

where Ws(B) = % (\/52 + 4||8||? — 25) \/\/52 + 4||8||? + 6 and s = \/\/52 + 4| Bo||? —

encourage minimum norm preserve initialization f,

ppl
— when 6 = O, M = V%’M”ﬂ”ﬂd"‘ 118]|2

Lazy — when 6 > 0, M =~ 01, akin to linear regression.

), akin to to silent alignment

projected gradient descent —




Initialized near a Parameter Space Initialized near a
saddle Explanation minimum

N o

Rich Feature learning Spectrum Lazy

@

slow norm, fast direction Function SPaCe fast norm, slow direction
“align then fit” EXP‘anaUOﬂ “fit”




Function Space: Quantization in ReLU Networks

Maennel et al., 2018 observed that two-layer ReLU networks from small initializations (@ < 1), the first-layer

weights concentrate along fixed directions determined by the training data, irrespective of network width.
1.0k A A 1.0 N A 1 1.0 ' ,,""'—\"V"_“ l"‘,‘l ’." i 1.0 * -F |‘ '“q.l l"}
a=0.1 a=0.3 a=0.5 a=0.7
“Empirical observation in 1d is that the ReLU kinks move while the training loss stays approximately constant,
and they align with each other.” Maennel et al., 2018 T4 o
:' " @
A
\
\
D)
Many subsequent studies (Phuong and Lampert, 2020, Lyu et al., 2021, Boursier et al., 2022, Min et B |
al., 2023, Wang and Ma, 2024) have observed distinct alignment and fitting phases. n )
/
/7

@ S~ _/Sdcad
@ Min etal. 2023



2D analog of Maennel et al. observation

Feature Learning Kernel Learning

Output

\)\,
Input 7 \p
norm is slow & direction is fast norm is fast & direction is slow

“align then fit” “fit"”



Part 1: What conditions enable feature learning?
When and why does feature learning emerge.

f(x; 0) V&

When: Small-scale initializations where the NTK evolves

Why: Saddle-to-saddle dynamics with fast directions and slow norm

Part 2: What mechanisms drive feature learning?

Vo2 x,y}

What features do neural networks learn, and how.



Parameter Space Function Space

f0) v 0 = V,&~—y

Loss

e

Tl 7:2 T3 T4 TS T6

Epochs
Can we predict loss levels and Can we determine the fixed

jump times of saddle-to-saddle?  points of alignment from data?



Alternating Gradient Flows: A Framework for
Feature Learning in Neural Networks

Daniel Kunin Giovanni Luca Marchetti Feng Chen Dhruva Karkada
Stanford University KTH Stanford University UC Berkeley

James B. Simon Michael R. DeWeese Surya Ganguli Nina Miolane
UC Berkeley UC Berkeley Stanford University UC Santa Barbara

TL;DR: We conjecture that two-layer neural networks with a vanishing
initialization alternates between maximizing a utility function over dormant

neurons and minimizing a cost function over active neurons




General Framework Diagonal Linear Piecewise Linear Modular Addition

(Section 3) (Section 4) (Section 5) (Section 6)
aq a; ag U1 U; U4 aq a; a w1 Ww; wq
g | .. g | .. o @ @ @ @ @ @ @ @ @
wit  w;t wgt ’U1T Uz'T (% T wit w;t wgt uitvr Uit Uqtvg
T L1 £Lj Ld T L1|L2

(active neurons)

S
[ =54

Utility maximization
(dormant neurons)

Epoch Epoch (log scale) Epoch (log scale) Epoch (log scale)




Alternating Gradient Flows

A two-layer homogeneous (6(az) = a* 6(z)) network composed as a sum of “neurons”:
y g P

‘\ @

@
fi(x; 0) = a;o(w/!x)

H
fx; ©) = Zfi(x; 0) 0, = (w;,a)
i=1

By the homogeneity of f(x; ®), we can express it as the norm weighted sum

0,
f(x:©) = Z ||e||'<f( ||9||>

The neurons only “interact” through the residual:

r(x; ©) = y(x) — f(x; 0) € R",

In the vanishing limit (because norm dynamics are slow) the residual becomes piecewise constant

r(x; ©) = y(x)



For a fixed residual r(x), we define the normalized utility function,

% - R™ — R, for each neuron as:

n i O —® Neuron
wu0,r) =Lk, <f ( 0 ) r(x )> Neuron 2
6] -—@® Neuron 3
Act
which drives the directional and radial dynamics for each neuron ¥ Activates
independently
d d A
= 161" Py V%, —6,]l = k6<%,
dt HH | dt
These dynamics breaks down as soon as a neuron activates by crossing ||6;|| = ©(1) — the residual cannot be

constant. For each neuron, we can solve for its jump time t;, using a path integral of its accumulated utility & (7):

—log ||6.(0)|| itk =2, t
=mf >0 | 5O =1 jeopr=—1 where &A1) = | k% (s)ds
- if k> 2. Jo




We partition the set of neurons into dormant set (still near the
origin) and active set (left the neighborhood of the origin).

Active Set

\Dormant Set

The active neurons are all “aware” of each other and work collectively to quickly minimize the loss

restricted to the active set:

1

y(x) = Y fix: 6)

ieof

*It is possible for an active neuron to become
dormant again when minimizing the restricted loss.

The active set equilibrates at a critical point 6%, then a new residual is computed, which is a saddle point

of the original loss.

r(x) = y(x) = ) fix: %)

e

0 € Crni(Z ) = (67,0) € Crit(Z)

The process repeats until all dormant neurons are either active or the residual is zero.



Alternating Gradient Flows Framework

Initialize: Y =[H], o ={},r(x) =y

Utility Maximization:
maximize % (0;,1)

Foreachi € Y,
subjectto  ||@]| = 1.

Transition neuron with smallest jump time
T; to active set.

Cost Minimization:

minimize Z(O)
subjectto  ||6.]| =0, Vie Y,

l

0.l >0, Vied.

l
Update residual and it necessary return

neurons to dormant set.

Termination: When & = {} orr(x) =0

Loss —e Neuron 1 — Neuron 2 Neuron 3 —kExplode

! Cost minimization
S over active neurons
is fast and occurs at large scales

Y
Utility maximization i
over dormant neurons
is slow and occurs at small scales

71 72 73 Epoch

Conjecture: With vanishing initialization, gradient flow in two-layer
homogeneous networks follows a discrete trajectory transitioning
between saddles, with the order and time determined by AGF.



1: AGF for linear networks

A two-layer linear network as a sum of H neurons:

‘\

‘

H
fx:8) = ) f(x:6) 6, = (a,w)
=1

Ji(x;0) = aw/'x

Let's assume XX = I, such that its only the input-output cross-covariance XY that need to be learned

At initialization, the residual is y(x), and then the utility is the bi-linear product

U(0;r) =L, [<aiwl.Tx, r(x)>] = alE, [yxT] w; = a!YTXw,
Utility maximization is a Rayleigh quotient problem, resulting in the top left/right singular vector of Y1X = UXV1

maximize a!YTXw,
— (a*, w*) o (uy, v)
subjectto  ||a;||* + ||wi||* = 1. b



We can estimate the accumulated utility &',(¢) = K%;kl‘,
and thus the jump time as

log(||6,(0)I1)

01

(T

After cost minimization, f(x; ®) = u;01v/x, thus the
new utility will be computed with the matrix,

TY — T
Y X MIUIV p

then the second top singular vectors are learned and it
repeats recursively.

Algorithm 3: Greedy Low-Rank Learning Li et al. [12]

Input: step n > 0, iterations 7' € N, perturbation € > 0
Initialize: 7 < 0, Wo < 0 € R¥*¢, Up(c0) € REXC
while \; (—=VL(W;)) > 0do

r<—r—+1
u, < unit top eigenvector of —VL(W,._1)

U (0) < [Ur_1(00) +/Eu,] € REX"

fort =0,1,...,7T do
\_ U-(t+1) <« U.(t) — nVL(U,(t))

W, < U,(00)U,' (00)

return Sequence of W,

Two-layer Linear Network

101
1072
n
(Vp)
9103
L
© 10~4
|_
10-> 4 —— Online Gradient Descent
------ AGF Theory
10°°
10* 103 105
Epochs

Li et al. 2020 proved that all two-layer matrix factorization

oroblems, i.e. XX # 1, gradient flow with infinitesimal
initialization is mathematically equivalent to a simple
heuristic rank minimization algorithm.

The AGF framework is this algorithm, once you replace
the top eigenvector calculation as maximizing utility.



2. AGF for diagonal linear networks

A diagonal linear network trained on MSE & = —|ly — (u ® v)TXT||?

Proceedings of Machine Learning Research vol 125:1-39, 2020

Blake Woodworth

Toyota Technological Institute at Chicago
Suriya Gunasekar

Microsoft Rescarch

Jason D. Lee

Princeton University

Edward Moroshko

Technion

Pedro Savarese

Toyota Technological Institute at Chicago

‘-u e Rd-»Q-v c R?

Ttay Golan
Technion

Daniel Soudry

Technion

Nathan Srebro

Toyota Technological Institute at Chicago

Editors: Jacob Abernethy and Shivani Agarwal

33rd Annual Conference on Learning Theory

Kernel and Rich Regimes in Overparametrized Models

BLAKEGQTTIC.EDU

SURIVAGTTIC.EDU

JASONLEEGPRINCETON. EDU

EDWARD.MOROSHKO@GMAIL.COM

SAVARESEGTTIC.EDU

ITAYGOLANGGMAIL.COM

DANIEL.SOUDRY @TECHNION. AC.IL

NATIGTTIC.EDU

Implicit Bias of SGD for Diagonal Linear Networks:
a Provable Benefit of Stochasticity

Scott Pesme Loucas Pilland-Vivien
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Abstract

Understanding the implicit bias of training algorithms is of crucial importance in order to
explain the success of overparametrised neural networks. In this paper, we study the dynamics
of stochastic gradient descent over diagonal linear networks through its continuous time version,
namely stochastic gradient flow. We explicitly characterise the solution chosen by the stochastic
flow and prove that it always enjoys better gencralisation properties than that of gradient flow
Quite surprisingly, we show that the convergence speed of the training loss controls the magnitude
of the biasing effect: the slower the convergence, the better the bias. To fully complete our

23
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(S)GD over Diagonal Linear Networks:

Implicit Bias, Large Stepsizes and Edge of Stability

Mathieu Even* Scott Pesme” Suriya Gunasekar Nicolas Flammarion
Inria - ENS Paris EPFL Microsoft Research EPFL
Abstract

In this paper, we investigate the impact of stochasticity and large stepsizes on the
implicit regularisation of gradient descent (G and stochasic gradient descent
(SGD) over diagonal linear networks. We prove the ce of GD
and SGID with macroscapic iepsises in an overparaietrised regession efing and
provide a characterisation of their solution through an implicit regularisation prob-
Jem. Our charcteisaton provides nsightson how the choice of minitch sizes
and stepsizes lead to qualitatively distinct behaviors in the solutions. Specifically,
we show that for sparse regression \eamed with 31 layer diagonal linear networks,
large stepsizes consistently benefit SGD, whereas they can hinder the recovery of
sparse solutions for GD. These effects are amplified for stepsizes in a tight window
just below the divergence threshold, known as the "edge of stability” regime

1 Introduction

3

2
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Raphaél Berthier

Incremental Learning in Diagonal Linear Networks

RAPHAEL.BERTHIERGEPFL.CH

EPFL

Laus

anne, Switzerland

Abstract

Diagonal linear networks (DLNs) are a toy simplification of artificial neural networks: they
consist in a quadratic reparametrization of linear reg a sparse implicit
regularization. In this paper, we describe the trajectory of the gradient flow of DLNs in
the limit of small initialization. We show that incremental learning is effectively performed
in the limit: coordinates are successively activated, while the iterate is the minimizer of
the loss constrained to have support on the active coordinates only. This shows that the
sparse implicit regularization of DLNs decreases with time. This work is restricted to the
underparametrized regime with anti-corre

on_ inducing

ted features for technical re

Keywords: diagonal linear networks, incremental learning, saddle-to-saddle dynamics
implicit bias, Lotka-Volterra

1 Introduction

Artil

etal,

ficial neural networks are the state of the art for many machine learning tasks (Le Cun

2015): however, we lack theoretical understanding of this success (Zhang et al., 2021)

Gissin et al. 2019, Woodworth et al. 2020, Pesme et al. 2021, Even et al. 2023, Berthier 2023, Papazov et al. 2024

(x;0) = (u ®v)Tx We consider gradient flow dynamics from initialization u = al,v = 0.

The utility for each coefticient is:

A 1

n

We can get exact expression for accumulated utility

cosh(4%*(0)t™ + c(1))
cosh(c,(?))

S (t+7*) =—log

In the limit a — 0, AGF converges to the same
sequence found by Pesme and Flammarion, 2023

Algorithm 2: Pesme and Flammarion [22]

Initialize: ¢t <
while VL (3
D+ {j €

t+—t+ 71"

0,8+ 0€eRY S« 0eR?
0 do

| VL(B); # 0}
" < inf{m;, >0 €D, S,
S(—S—T*Vc(ﬂ)

= arg min L

return Sequence of (3,

) where 3 €

(

B € R?

o O O

if S;
if S;
if S;

l
|
et




Coordinate-aligned XX

Stepwise Evolution of Beta Over Time Loss Curve Over Time
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(ula] + v|b])*w|c|

One-hot inputs

b

a+b mod 5

One-hot inputs

3. AGF for quadratic networks trained on modular addition

b

Embedding weights Unembedding weights

Figure 2 from Morwani et al. 2023

Grokking modular arithmetic

Andrey Gromov
Meta Al
Meta Platforms, Inc.
Menlo Park, California 94025
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Department of Physics,
Condensed Matter Theory Center,
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College Park, Maryland 20740

gromovand@meta.com

Fora,b € Z,and k € Z )\ 0}, then

(a+b) mod p =argmax_ _ z,

COS <2nk

a+b—c

P

)
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eurons specialize to a specific frequency
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No saddles with a one-hot encoding:
Template Shift 0 Shift 4 Shift 8 Discrete Fourier Spectrum
1.0 - 1.0 - 1.0 - 1.0 - 1.0 -
0.8 - 0.8 - 0.8 - 0.8 - 0.8 -
0.6 - 0.6 1 0.6 - 0.6 - 0.6 1
0.4 - 0.4 0.4 0.4 - 0.4
0.2 - 0.2 1 0.2 - 0.2 - 0.2 1
0 10 20 0o 10 20 0% 10 20 0% 10 20 00 10 20

Saddles with a correlated encoding:

Template Shift 0 Shift 4 Shift 8 Discrete Fourier Spectrum

40 -
5 5 5 5
4 4 - 4 - 4 -
30 A
3 3 - 3 - 3 -
2 2 r & 2 20 -
1 1 1 1 1 1 1
0 |II.I |II.I N |II.I |II.I 1 |II.I I'I' N |II.I |II.I
=1 =1 =1 =1 < 0 L1

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20




Cosine waves maximize the utility function

We prove that the utility-maximizing unit vectors are cosine waves at the dominant
frequency of the encoding vector.

Theorem 6.2. Let £ be a frequency that maximizes |z|k||, k = 1,...,p — 1, and denote by s, the
phase of z|€|. Then the unit vectors 0, = (u., V«, Wy) that maximize the utility function Uy (0) take

the form
ux|a) = \/?cos (27r§a + su)
p D
V. |b] = \/§cos (27r§b — sv) (19)
p D
Wy |c|] = \/?cos (27r§c + sw) :
p D

where a,b,c € {0,...,p — 1} are indices and s,,, sy, Sw, € R are phase shifts satisfying s, + s, =
sw + 8z (mod 2). They achieve a maximal value of U, = /2p|Z[€]|°.



During cost minimization, multiple neurons collaborate

During the cost minimization step, the neurons grow in norm and specialize in their phase shi

Training Loss Over Time

101

--------------------------------------------------------------------

With < 6 neurons the network cannot
learn to remove the dominant

frequency from the residual

10-1

ts.



Putting it together

1. Often large spikes and instability

follow cost minimization — Adam

smooths them.
2. Often the network consistently

uses 6 neurons per frequency
hinting at a sparsity bias.
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Future directions for AGF

0. Finish the pre-print.

1. Consider other theoretical settings for AGF, such as Multi-index model.

2. Extending AGF to deeper networks.

3. Using AGF as an alternative optimizer to SGD.



Part 1: What conditions enable feature learning?

When and why does feature learning emerge. f(x; 6) V,&

When: Small-scale initializations where the NTK evolves

Why: Saddle-to-saddle dynamics with fast directions and slow norm

Part 2: What mechanisms drive feature learning?
What features do neural networks learn, and how.

Vo2 x,y}

What: Directions that maximize the utility function.

How: Through an iterative maximization-minimization process



Thank you!
kunin@stantord.edu
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