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Deep Learning

- Redundant, brain-inspired ansatz for functions + Many Examples + local optimization
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Theoretical Questions

- Optimization: \Why is optimization relatively easy despite the highly non-convex landscape?

- Generalization: Why does it find a good solution while having many more model
oarameters compared to training data?

- Alignment/Interpretation: \What features of the data are used for prediction? Is it alignead
with the proper way of thinking on problems?

- Complexity classes and scaling: How smart would ChatGPT with x100 compute be? Are
Humans in the same sample-complexity class as ChatGPT?
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Science on the:

[N more mature fields

Partial List of Theoretical Techniques
n Deep learning

Random Matrix Theory
Gaussian Process
(Deep) Linear models

Saad & Sola
DMFT
Stat. Mech.

Spin-Glass for Capacity
Stochastic Processes in time
Stat. Learning Theory
One-Step GD

Modelling level

>

ity scale

Deep Learning —— High Energy
~ Condensed
Matter
Astrophysics

Biophysics
Neuroscience

Common Formalism



Our emphasis

1. Generic formalism [not conditioned on one-trainable layer, width, etc.. ]

2. Physics style [approximations, typical case thinking, no special focus on
exact asymptotic limits]

3. Fundamental Science |Prioritize understanding, long-term|

4. Bottom-up/Microscopic |0s opposed to biological/data-science
approaches]

5. Expanding the toolkit [Replicas, Diagrams, RG, Field-Theory, Representation-
heory,..]




Collaborators

Inbar Seroussi Moritz Helias  Gad Naveh ltay Lavie Noa Rubin

Learning curves for deep neural network a gaussian field theory approach Cohen, Malka, ZR (2019)

Separation of scales + thermodynamic description of feature learning in some CNNs Seroussi, Naveh, ZR (2021)
Grokking as a First Order Phase transition in two layer Neural Networks Rubin, Seroussi, ZR (2023)

Wilsonian Renormalization of Neural Network Gaussian Processes Howard, Maiti, Jefferson, ZR (2024)
Towards Understanding Inductive Bias In Transformers.... Lavie, Gur-Ari, Ringel (2024)

A unified approach to feature learning in Bayesian Neural Networks Rubin, Seroussi, ZR, Helias (2024)
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(Groundads

1. True out-of-equilibrium physics is extremely challenging...

2. While lite is an inherently out-of-equilibrium phenomena, there is little reason
to think deep learning is an inherently out-of-equilibrium.

3. DNNs are often over-parametrized, no reason to expect Glassy-behavior or
exponentially large equilibrium times. SGD has been argued to be roughly
Bayesian®.

4. A lot of the formalism and approximations generalize to dynamics via MSRDJ.

5. Equilibrium relates to Bayesian learning, which is a holy grail in inference.

*e.g. C. Mingard et. al. 2021



Equilibrium and Bayesian
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Flelds rather than welghts



The field theory viewpoint M

On random/at-init networks

Raondom Function

N
Zyy o(X) = Z acErf(wcT x) x € R?

c=1

Random Weights (a.., w,.

Kernel Green'’s function

K(.X, xl) — <Zw,a(x)zw,a(xl)>unif0rm(w,a) g G(X, xl)

Cohen, Malka, ZR (2019) : Halverson, Maiti, Stoner (2020): Helias Dahmen (2020)



Random DNNs induce a propability on function Space

Narrow [N=5] C— o

P[f] =J lel...J Da ..8 |f(.) =z, .(.)]

N
Zw,a(x) — Z aCErf(WZX) X € R2

c=1
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Random Infinite width DNNs - Free Field Theory
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niinite widtn .

Random .

DNNSs - Analytical Results

. Infinite randomized DNNs generate a free field theory (Gaussian Process [R. Neal 1996])

N

Entropic term!

N—1/2
Plf] = J lel L DWNdI Dal L DaN§ [f( L) — Zw,a( . )] X oo e—%fdxdxf(X)K—l(x,)’)f(x')
_g-12

K(x, xl) — <Zw,a(x)zw,a(xl)>uni]C01’I7’l(W,a)

 Entropy generates a bias/entropic-force towards network output function which have large
K(x,x’) eigenvalues. For this simple network, this means a bias towards low order polynomials
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Fleld theory of an infinite network
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Output dist. Of random DNN

1
5= —log(P,y) + Z [fix,) — y(x)I°/2T = “fK‘lf + Z [f(x,) = y(x)1772T

It's A Gaussmn Process!



Physical Analogy: Pinned Elastic Membrane with non-
local elastic modulus

Z Dfe K2 Zn P55,

— 00 OCN—>OO

Flasticity <-> Entropy of weights given T

Il GPR
Bl Posternior Sample

Pinning Potential <-> Training datao

FIG. 1. A physical picture of supervised deep learn-
ing. The output of the DNN, as a function of input data, can
be seen as an elastic membrane (surface) which relaxes to its
equilibrium distribution during training. In this steady state

* From Cohen, Malka, ZR (2019)

** Silverman (1984); P. Sollich (2001); Bartlett et .al.(2019); Cohen, Malka, ZR (2019); Canatar, Bordelon, Cengiz (2019)
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TTuly analytic predictions require dataset
averaging



GP limit ana Dataset averaging

(f(x, ) y(x )7

| |f \ -
SN—>oo,s.scaling N Jdﬂxdﬂyf(x)K l(x y)f(y) T z [f(x ) )’(X )]2/2T — Ll T Z
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GP limit ana Dataset averaging

P fx) — y(x,)’
2T

] FiF
SN—>oo,S.scaling o Jdﬂxdﬂyf(x)K l(x y)f(y) T z [f(x ) )’(X )]2/2T — ;KHS + Z

- Taking an extremum vields standard GPR preohctor

. Disorder average (omitting replicas for clarity)

|f|%€KHS |f|%€KHS |f|%€KHS
_ -LIT _ ~LIT —LJT
<Zf—>°°>dam = <Je 2 >d = [e 2 < >dam Je > exp | P|due
ata

: B —[fx)—y(x)]?
SN—>oo,s.scaling,dataAv. — 5 J'd//txd//tyf(x)[{ l(x, y)f(y) — PJdﬂxe [J )=y 72T
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['hree different treatments of the GP average action

Perturbative expansion [Cohen, Malka, Ringel (2019)]
n
S, = [dﬂxdﬂyf(x)K ) + — Jdﬂx[f(x) — y(0)1* —n+ 0(1/T?)

I a.k.a. Equivalent Kernel [Silverman (1982)]
Gaussian Discrepancy Approximation [Canatar, Bordelon, Cengiz (2020)

S ~ ldud K~ (x, —_nl T+Jd )2 Can be view as an RMT result
J udp, fOOK™ (x, )f(y) — n Og( w(f—y) ) Simons et al. (2023)

| du (f—y)*
I+ <Id//lx(f_ V)2 ) MF 2

Renormalization-Group Flow [Howard, Maiti, Jefferson, Ringel (2024)]

S.A= [dﬂxdﬂyf COK (e, ) = anﬂxe_[f DO 1 O(4,/T(A))?

MSR + Disorder average [Pleligs sRahmen.202 {@M@E& fé@l‘fréll(}@tzéy(w)am@i{dyxe_[f(x)_Y(x)]z/T

R [dﬂxdﬂy FOOK™ (x, y)Ay) -




‘Classical’ Thinking - Too much model capacity 1s bad.
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Some saw through this
In the early 905

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the
following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?

Why doesn’t backpropagation head for a poor local minima?

When should one stop the backpropagation and use the current parameters?

Reflection after refereeing paper for NIPS,
Leo Breiman, 1995,



A classical example of overfitting

Interpolation
Threshold

Finite rank degenerate kernels and noisy target
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Real Kernels are di:

d 00
K. x) = 1 ) p@d(x) = ) A0 (x) Ay k'
k=1 k=1

Also input dimension and input entropy is typically very large.

Main insight — T kills the peak around the interpolation threshold. Many very small
kernel modes can induce an effective temperature/T.




F1rst step: .

Large T benhavior -

1
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Low T behavior - Non-perturpative approaches
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~Xperiments:

Applications of Statistical Field Theory in Deep Learning

MSE Loss

CIFAR Data
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Figure 2.1: Gaussian Processes Regression on four 10k binary CIFAR and MNIST
datasets, at xk° = le — 8. Experimental results (dots) match well both the effective
ridge theory and the RG theory. In the latter, we took 0.01-learnability as marking
the RG cut-off. We comment that results are similarly accurate for 7' = 0.001 and
T'= 0.1. The Equivalent Kernel estimator is expected to become accurate when the
loss reaches the scale of x°, explaining its poor performance in the shown range of P.

Zohar Ringel, Noa Rubin, Edo Mor, Moritz Helias, Inbar Seroussi

https://arxiv.org/pdf/250218553



GP limits: Open Questions

- What lays beyond the Gaussian Discrepancy Approximation? [e.g. Howard et. al. fina
position dependent temperature/ridge]

« GP Limits of Diffusion Models

.« GP Limits of Physically Informed Neural Networks [some first steps carried in Miron, Seroussi,
Ringel 2023]
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Bridging .

“eature Learning and Mechanistic Interpretation

The_Orv PI’CICLUCE ¢ Claude
(a) 3o (b) ) _ : .
10— a”=0.3 10 —— o~ =0.1 \ At the end of May, Anthropic released Golden Gate Claude to the public for 24
| | | In | @ . . . .
| | | | | | | hours. This manipulated version of Anthropic’s Claude 3 Sonnet model had an
8 | | 8l | \'J _ [H M obvious obsession with the Golden Gate Bridge.
" l. JEL | l. l 6! | T ‘ | : \ | ;"l
| s e R IR (A . .y s S
« "1'1 i | i “ |F L L If you ask this “Golden Gate Claude” how to spend $10, it will recommend using it
4 |l =g s | T3 . : . :
# .:“ ,H;Jr**; +{‘“+% to drive across the Golden Gate Bridge and pay the toll. If you ask it to write a love
21 f,, m"j 2 % i i story, it’ll tell you a tale of a car who can’t wait to cross its beloved bridge on a
; ‘“?';; *f . a 7 foggy day. If you ask it what it imagines it looks like, it will likely tell you that it
—LGE U 000 0a s LG ~0E=0a 00 0e L0 imagines it looks like the Golden Gate Bridge.
W wW* w-w*
Order Parameter: Order Parameter:
Linear super-position of neurons in input/middle layer super-position of neurons in middle layer
. Rubin Seroussi ZR ICLR (2 0?2 3) Understanding Anthropic’s Golden Gate Claude, Davis, Medium (2024)

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet, Anthropic, Transformer-Circuit (2024)



Feature Learning Regime - Data averaged

Finite N or ME.Scaling

N
- Focus on a two-layer network for simplicity Z(x) = Z ac¢(wCTx)

c=1
. Introduce two auxiliary fields for every layer except the input layer by introducing functional

delta functions

. Integrate out all weights expect input layer weights

2 N

d|w.|” Ua | o
0= Z 262 N 2 Jdﬂxdﬂyt(x)¢(wg X)p(w: (y) + leﬂxlf — PJdﬂxe [0 =y()I/T

c=1




A

list of actions

- GP limit, any networks, any depth

- Two layer DNN

dlw.|? 62 &
S: ¢ _|__a
- 202 N;

- Three layer DNN

- i[dux Fof + . AOr M) | +

1
S =—
2

2N

2
> <Jduxf<x>a<h;“<x>>> ¥

l

2NO)

I d//txdﬂyf OK(x, y)f(y) — P J du.e” [f0)=y() 14T

2
( Jdﬂxt(x)gb(wg x)) + iJ'd//txl‘][ —P jdﬂxe—[f(X)—y(x)]z/T

2
Z (Jdﬂxilﬁl)(xw(wj(o) -x)) — PJdﬂxe—[ﬂx)—y(x)]Z/T

ij



Recovering the NNGP limit

N

2
5= Z Qe ‘ 0 Z Jdﬂxdﬂyf(x)¢(w X)pw! Mit(y) + szﬂxzf Jdﬂxe—[f(X)—y(x)]2/2T

202
c—l

. As N — 00 each individual we feels t(x) less and less, hence stays in its Gaussian prior

. However t(x)t(y) see the aggregate effect of all ¢(WCT x)¢(WCT y) leading to

d | \ |
S = Z 2:; Jduxduyt<x><az¢<wK(x>>¢<w W) + leﬂxl‘f—
XY

. |Integrating out t using square completion we obtain our previous NNGP action for the output

I 2
SN—>oo s.scaling — D) J'd/“txd/’tyf(x)K l(x, y)f()/) — Jdﬂxe_[f(x)_y(x)] [2T



Are there qualitative performance
differences pbetween the GP limit
and feature learning regime”
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T'he case against GPs

- The common lore is that feature learning is an essential ingredient in deep learning.
- We know that converges to the GP limit only happens when width=N>>P, which is very unrealistic
- We know of toy settings where GP gualitatively underperforms real DNNs

- GPs are also very-inefficient at large datasets, as they require inverting a P by P matrix.



- Xample: staircase learning

y(x) = (Ws - x) + e(ws . X)° x € R?

Sample Complexity Question: \What is the scaling of P with d, required to learn 90% of the cubic

N
z(x) = Z a.Erf(w; x)
c=1
component?
INntuition:

1.

The Gaussian Process, bel
separately. For symmetric

ng linear in th

cernels and ¢

2. The actual DNN, being non-linear in the

the linear part, so much thas
earning a cubic function is not very hard.

e target, learns” the linear part and cubic parts
atasets, learning the cubic part requires P=d3

target, can learn to focus on the w. direction based on

' the effective data dimension becomes O(1), in which case

E Abbe et. al. 2021



GP solution and why P = O(d?)

A dash of representation theory

N
)= ) aErfwly) 3@ = (w0 +ewen)  xesd

c=1

K(x,x") = (z(X)z2(X)) g ypoyr = F(| x|, [ x|, x - ") = K(Ox, Ox") = K(x,x") O € O(d)
7

K(x,x') = 2 LY, Y, ()  me[1..0(d)]
[m

y(x) = z a,Y; (x)+ Z ¢, Y3 (X)

me(1..d] me[1..0(d>)]

Since the cubic part is determined by O(d!) coefticients, which are equally probable in the prior +
inear part doesn’t help — we find P=0(dA3) data-points are required to fix these coefficients.
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Beyond Gl

- Kernel adaptation approximation

2 N

Z Jdﬂxdﬂyt(x)¢(wg X)pwe YY) + inﬂng_ P Jdﬂxe—[f<x)—y(x>]2/zT

c=1

Kernel Adaptation [Seroussi (2021) ; also Aitchison (2019), Cengiz (2022), Helias (2024), Mallet (2024)]

J Jt(X)f/ﬁ(WcT X)Pp(we MHY) = ” () prpWe X)pwe VYD) + J Jf(X)(f/ﬁ(WCT X)W, ) prt(y)

Backprop effects on input weights KmF(X,Y)

(1(x)) = ; () = y(),

.« For kernel scale as order parameter: Li & Sompolinsky PRX (2021) Hanin et. al. (2023) [linear
FCNSs|: Arioso et. al. Nat. ML. (2023):



Kernel Adaptation in some more detai

Data average case

2 N

0= Z Al + Z Jdﬂxdﬂyf(X)¢(Wf X)p(w; YY) + inﬂxtf_ n[dﬂxe—[ﬂx)—y(x)]z/T

202
c—l

Adaptive Kernel decoupling + Leading order expansion in (f-y)*2/T [a.k.a Equivalent Kernel ]

N N
5 = Z Surlwel + Syelfs tl = p, Z Surlwel + Syplf ]
C= c=1

dlw|* o2
202 2N

Syr(w) =

JJ(f(x)>MF<t(Y)>MF¢(W X)p(w'y)

Sur(f) = %” Ky f+ L] (Oyr = [Kyp + 6%I1P1™Yy  Kyp(x,y) = (W  )pW" )}y



Kernel Adaptation in some more detai

Data average case

202

d‘W ‘ 02 N | ) _ 2
S = Z Z J'dﬂxdﬂyt(x)¢(WZX)¢(WZy)t(y) -+ lJ'dqutf— n[d//txe [ f(X)—y(x)]“/T

c—l

Adaptive Kernel decoupling + Leading order expansion in (f-y)*2/T [a.k.a Equivalent Kernel ]

N N
5 = Z Surlwel + Syelfs tl = p, Z Surlwel + Syplf ]
C= c=1

dlw|* o2 GFL 1
Syr(w) = 5 2NJJ<I(X)>MF<t(y)>MF¢(W X)pw'y) = ~d.n—oo EW ZMFW

]
Sur(f) = 5 ” Ky f+ L] (e = [Kyr+ 62 IP17 Yy Kyp(x,y) = (W' )pw' ) sz, )
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Fig. 4 | Pre-activation statistics in the 3-layer student-teacher setting. Left.
Histogram of student input weight vector, dotted with the normalized teacher
weight (blue) and normalized random weight (green). Right. Histogram of student
hidden layer pre-activations, dotted with the normalized teacher pre-activations
(blue) and normalized pre-activations of a random teacher (green). Dots are

empirical values and dashed lines are Gaussian fits. Insets: 2d histograms along the
same vectors before (left) and after (right) training. Within our framework, these

variances are determined by v'Kv with v being either random unit vector or h” of
the single channel teacher. Remarkably, despite strong changes to the kernels and
various non-linearities in the action, the pre-activation is almost perfectly Gaussian.

3 layer non-linear CNN, student teacher setting

Seroussi, Naveh, ZR (2021)
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GFL - Evidence from pruning

100
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Pruning ratio [%]

VGG-19 [from Torch-vision] pruned by projecting out low latent layer kernel eigenvalues

K. Fisher, M. Helias, Z. Ringel [to be published]



Kernel Acaptation: Exploiting symmetries

N N
5 = Z SmplWel + Syelf. 1l = p, Z SmplWel + Spel /]
c=1 c=1

dlw ‘2 Gc% T T GhL Ty—1
SMF(W) - 203‘} | 2NJ[<t(x)>MF<t(y)>MF¢(W x)gb(w y) %d,n—wo EW ZMFW
|
Sur(f) = 5 ,[JfKA_ﬂl:f_l_ Llf] (Opr = [Kyp + Uz/n]_ly Kyp(x,y) = <€/7(WTX)¢(WT)’)>W~/V(ZMF)

For y(x) = y(ws X)  p, = U & € O(d) then solution must obey 2 = aP, + bwsw,

We Thus obtain a non-linear equation in only two variables [a,b].
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Experimental results - Proximity to a phase transition

Epoch num 2000000

w
1

—log(P(w - wx))

e it from var

d=50 | Mean-field Scaling | N=Width=1000 | y(x) = H;(w« - x) + 0.05H;(w: - x)
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GFL/VGA phase

a2 =0.3

Phase transition can be 1st order -

GMFL/Coexistence phase
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10

8 ]

o =0.1

(c)

()
0.01

0.00-

Related to Grokking

0.0

&
2 3 + Ar
0,85 i-"-:"’
’

0.20 0.25 0.30
o2

Rubin, Seroussi, Ringel (ICML 2023)



lications for CNNs (actually simpler
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Figure 3.3: In this figure we compare a linear network trained on a single index

linear teacher, with an Erf network trained on a cubic single index teacher (y(x) = Appl ications Of StatiSticaI FiEId Th eory in Deep Learning
wy -+ 0.1 Hs(w, - x), where Hy is the third Hermite polynomial). The ratio between
the teacher direction eigenvalue of the kernel to the eigenvalues corresponding to Zohar Ringel, Noa Rubin, Edo Mor, Moritz Helias, Inbar Seroussi

b ’ ) ’

orthogonal directions for the Erf and linear networks is shown in panels (a) and (b)
respectively. In panels (¢), (d) the learnability (f-y/y-y) is shown for the Erf and linear

network respectively. Network parameters: ¥ = 100, N = 1,5,10, 8 = 50, C = 1000. htt pS //Cj rX|\/O I’g/C] bS/ZSOZ 1 8553



Feature Learning - Open guestions

- Equilibrium Phase diagram of feature learning [GFL, GMFL-I,GMFL-II, Specialization,Feature
Compression]

- Feature learning in the Neural Scaling Laws regime.

- Developing techniques for approaching the interpolation threshold [e.g. Relating SAE with
Kernel Adaptation]

. Limitations, implicit biases, and overfitting of feature learning



Now to the pad news: Explainability paradox

Or how far can we take such analytic analysis?

- Assume we found a set of analytically solvable equations describing the outputs of a DNN
trained on a specific data-set

- Analytically solvable means that the complexity of inferring predictions from these
equations is O(1).

. Instead of training the DNN, we may just solve the equations.

- We thus found a simple O(1) training algorithm for this DNN. We also obtained a good
classifier analytically. Both are highly unlikely....
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[heory's main hope here: Universality/Irrelevance

- Toy models may capture a greater truth

« Some aspects of DNNs (e.g. initialization) might decouple (Modularity)

- Dimensionality reduction - The effective number of hyper-parameters anad
oarameters may be much smaller than it seems.

- The 1st and 3rd items are formalized in physics via the Renormalization
Group Approach



T'he Renormalization Group, Scale-
Freeness, and Neural Scaling Laws



Collaborators

Moritz Helias  Ro Jefferson  Jessica Howard — Anindita Maiti Gorka P. Coppola

Learning curves for deep neural network a gaussian field theory approach Cohen, Malka, ZR (2019)
Wilsonian Renormalization of Neural Network Gaussian Processes Howard, Maiti, Jefferson, ZR (2024)

Universality and finite-data effects in deep neural networks trained on scale-free data. Coppola, Helias, Ringel (TBP)



T'he Natural World

Scale-free

A

Power-laws Universality



Scale-free Phenomena

Google Earth



https://www.researchgate.net/profile/Steven-Mathey?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.youtube.com/watch?v=fi-g2ET97W8

Power laws
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(O)f(x))

Critical 2d Ising Model



Universality

Ising Model

Ising Model + All local symmetry respecting perturbations
Liquid-Gas at the tri-critical point
Quantum systems at d-1 with a Z2 symmetry

|
(fO)fx)) = C—
xH
n=1/4 C=0()



Scale-free phenomena in ML

Scale-free

A

AVa

Power-laws Universality




bower laws in PCA and

KEIT)

al-

Zipf's Law on War and Peace

PCA

—— Zipflaw (f = 1/(r+2)~1.08)
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Bahri et. al., Explaining Neural Scaling Laws, 2021



Neural Scaling Laws (Power laws In learning curves)
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute? used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Kaplan et. al. Scaling Laws for Neural Language Models (2020)



Universa

ity - neura

Networks

- The fact that many changes to training and hyper-parameters matter only in a few percent
and changes to architecture drive most innovation.

. Hyper-parameter transfer protocols

. Similar scaling curves for LSTMs and Transformers

Kaplan et. al. Scaling Laws for Neural Language Models (2020)
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The Big Questions

o Isthere aninput scale” associated with power-laws in data and learning?
 Are power-law indicative of universality?

o If there is universality, what is the minimal model? Scale-free

« How can we adapt RG from physics to ML? A

AVA

Power-laws Universality




I'he Renormalization Group
Approach 101



Wilsonian RG - As a Greeay Algorithm

- General Setting: \We wish to compute some average under some complicated probability

« P(fi..f;-.fo) x €xp (—S(fl o Jr .fA)) where f, are Fourier Modes of some field

o Thisis hard, so we focus observables which are function of k < kpp,c.rvarion (1OW energy”/

“IR” sector) and that modes with kK > kpp.ivarion, Ore weakly coupled to the rest (“high
energy”/“UV” sector).

e We gradually remove large k modes (Decimation)

Py (f;. [ fr) deAexp (=S(fy - Si--SF) = exp (=Sasi(fiy - So- - SaoD)

e We thenrescale the k/wave-number/momentum “index” (Rescale space)



Wilsonian RG - The Flow

e We found a mapping between the S and S’ actions

Pyoi(r- S JA) & deA CAp <_S(fl Ji- °fA)> .= CXPp <_SA—1(f1 - Ji- -fA—1)) .= CXp (‘S'(f1 i -fA))

 Since we integrate out only a single mode which is weakly coupled to the rest S should
be very similarto S'.

e This can be phrased as the following functional diffusion-like equation (Polchinski’s
equation)

dS(f; . fi--f)
’ d/\

= L[S]

 In many physically relevant cases, this functional equation simplifies to a finite set of
non-linear ODEs.



Wilsonian RG - The Ising Model and Universality

S[f(x)] = [dx( V(X)) + m*f*(x) + u J‘dxf(x)4 — "dk[k2 + m?] f,? + u def(x)4

2 ] +v def O(x)




Wilsonian RG -
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Applying RG to Learning:
Step (1) deep Learning As a Field Theory

e” 5]
f g

e q
» f




Lets start modestly, from the GP limit

1 2
S = 5 J'd//txd/xty FOK 1 (x, fy) — P Jdﬂxe—[f(X)—y(x)] /T

(f(x) — y(x))?

Scplf(X)] = Z A fp— P Jdﬂxe 22
k

. For real world data we often have & = 0.25

d ™~
~\~
-~

()2 o
S ~ k¢ 2 Pld ; (f(X)zxg(X)) \
GP[f(x)] ~ fk /’txe T
k

Bahri et. al., Explaining Neural Scaling Laws, 2021




GPR Field Theory Compared to Ising Field Theory
2 , - 2
SR 2"@@ +¥]F i P %”Y(x» B U = y0)

2T

S1sine LS = Jdk[kz + m*f; + u [dxf(x)4

. Different power of k —> Let's take a = 2
. Different local interaction —> No biggy
. Discrete summation over k instead of an integral —> Like what happens in a finite system.

- No translation invariance, k is not momentum, first term is non-local —> A bit scary...



™¥eh Conerete QUESTIONS

P Lo () = y@)’
. Canwe trackthe RG flowof Scpl/(¥)] = Z (K74 T]fk2 -r “ e o : 2T ]
k

« How many coupling constants are required to describe the flow?

« How does the RG flow relate to the learning curve? Scale-free

o Is there some form of universality? A

AVA

Power-laws Universality

 Are there RG fixed points?



Decimation only RG
(EFT style RG)

Howard, Maiti, Jefferson, ZR (2024)



Wilsonian RG - A Greedy Algorithm

- General Setting: \We wish to compute some average under some complicated probability

« P(fi..f;-.fo) x €xp (—S(fl o Jr .fA)) where f, are Fourier Modes of some field

o Thisis hard. So we focus observables which are function of k < ke rvarion (1OW energy”/

“IR” sector) and that modes with kK > kpp.ivarion, Ore weakly coupled to the rest (“high
energy”/“UV” sector).

e We gradually remove large k modes (Decimation)

P (fi . fr- fr) & deAexp (=S(fy - Si--S0) = exp (=Sa_i(fi - -Si- - Facy))




Decimation-on

v RG - Ana

- Generically, at large input dimension

AN
_ () = y(0)?
Seplf(X)] = Z b 'fi =P [dﬂxe -
k=1

A/
>k )4 e — P Jdﬂxe e
k=1

A\

A/

~ —142

~A<A Z A T + PJdﬂx
k=1

viica

Results

(f(x) — y(x))?

(f(x) — y(x))
OT(A)

/
T(A) =1 + E /Ik Intuitively: unlearnable modes look like observation-noise/regulator

A/

[reminiscent of Bartlett et. al. Benign Overfitting... (2020)]



Decimation only RG - gained insignts

. A single parameter (T(A") ) tracks the flow!

. Integrating out leads to a more Gaussian theory (weak coupling regime)

. Modes with /Ik_l = k% < P/T(A\’) are effectively frozen to y(x) [perfectly learnable]

- We may therefore view Pl g setting the minimal allow k which in physics is the inverse

system size (k. o L™1). RG Machinery for finite-size correction can then be important to

finite P corrections.

A () = () ) — v
$ 10 e s Bt a2
k=1

k=1



ccimation-on

MNIST Data
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Revisited

, Concrete QUESTIONS

() —yw)?

 Can we track the RG flow of S.,[f(x)] = Z kf7 + PJdﬂxe Yes at large input dim.

k
« How many coupling constants are required to describe the flow? One

e Is the RG flow indicative of the learning curve? P sets the system size.

_earning curve scales like the loss of @
» Is there some form of universality? theory with P=0 within this “system size:

 Are there RG fixed points?



Full Wilsonian RG (Adding the
re-scaling step)

fi-Jact = fi-Ia k= kAJA

(f(x) — y(x))? (f(x) — y(x))?
2

A
Seplf0] = ) A7 f2 - PJdﬂxe - Jdk/lk‘l fi— PJdﬂxe
k=1

Coppola, Helias, Ringel (To be published)



T'he technical challenges

- The theory has a background field (y(x))
- The average of f(x) scales differently than the std. under-rescaling

- Due to lack of locality, seemingly standard interaction terms contain delta functions in
addition to the trivial one from field-theory 6(k; + k, + k5 + k,)

- The scaling of Feynman diagrams becomes trickier and doesn't trivially depend on the naive
operator scaling dimension.




r-

A quick overview ol preliminary results

() = y())2 + u(f(x) — y(x))?

A
GPR with MSE+MQE+large ridge: S p[ /()] = Z A e — Pdexe e
k=1

Large-P/UV universality/asymptotic-freedom:

Most reasonable perturbation to the model vanish at large P

Learning Curves from scaling dimensions:

Simple relations exist between 1/P expansion of the learning
curves with the scaling dimensions obtained from RG




Ber Conerete+next QUESTIONS

() —y)?

Can we track the RG flow of S, /(x)] = Z kasz + PJdﬂxe 2k Yes at large input dim.
k

How many coupling constants are required to describe the flow? One or few at large P

Is the RG flow indicative of the learning curve? P sets the system size + Loss="Pscaling-dimensions”

Is there some form of universality? Yes but only at large P (most perturbations are RG-relevant)

Are there useful RG fixed points? Still checking this.

Is there a minimal model which faithfully captures large P behavior of a realistic
network?

Can importing RG machinery help us derive scaling laws in the feature learning regime?
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Adaptive Kernel Formulation

q _d|W‘2 Oy : T TN 1 Ty-1

ur9) = S 4 2 | GO0 TH) - 3" i
1

SMF(f) — 5 '[JfKA}}?f+ Lf] <t>MF = [Kyr + Gz/n]_ly

We find that the following ansatz for t(x) works at high dimension

(H(x)) 1y = le(w*Tx) -+ CH3(W>,<TX) y(x) = H(w* - x) + eH;(w* - x)

Calculating the integrals in §,,#(w) yields (also at high dimension) the decoupled actions

2
dlwTw, «|* (w-w) 2w (w-w) 2e(w - w*)’

i Slw-w*|=d — - b—
262 203 motdN +2<agv+ (w - w*)2> 1+2<0§U+(w - w*)2>

Qur "gb6” Landau theory ; gb = W*TW



‘heory - Experiment comparison

GFL/VGA phase

a2 =0.3

GMFL/Coexistence phase
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" Note that Nygepiye = n/o* « d - We find a change in complexity class!



Summary

Beyond Spectral Bias

Using Wilsonian RG EK limit and beyond Spectral Bias [Canatar et. Al ]
Multispectral kernel Large N, large T 3
\/Q(ge
S = d|w, | | % i Jdﬂ du t(x)pw! x)p(w!y)t(y) + inpt tf — anﬂ o~ L)—y1H/T
. 263‘} N _— AT ¢ ¢ X X

N4« n
Non tandard-scaling

Equilbrium Grokking Sample Complexity
And phase transition Fffects and Soft Grokking

&FHBGYOHd \/GA/m reer
RelLU within VGA

Adaptive Kernel Kernel Scaling




Further evidence for complexity change

This time within VGA [S[w] ~ w!Z,w] and with two layer ReLU networks

Network  f(x) = Z aCReLU(wCT X)

+ Mean-field sco\iné
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A unified approach to feature learning in Bayesian Neural Networks Rubin, Seroussi, ZR, Helias (In preparation)



Kernel Adaptation predicts change in complexity class
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Figure 2: Learnability ratios R o predicted by thé approximate adaptive approach (orange (54)),
scaling approach (green (6)), GP (red) compared to experimental values (blue), as a func-
tion of the scaling factor /3, for different values of n/d.
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