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Field theory approach to DNNs, 
a potential common language 

https://arxiv.org/abs/2502.18553



Deep Learning
• Redundant, brain-inspired ansatz for functions + Many Examples + local optimization
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Train Performance

W1

W2,3,..

= Good generalization/performance



Theoretical Questions  

• Optimization: Why is optimization relatively easy despite the highly non-convex landscape?  

• Generalization: Why does it find a good solution while having many more model 
parameters compared to training data?  

• Alignment/Interpretation:  What features of the data are used for prediction? Is it aligned 
with the proper way of thinking on problems? 

• Complexity classes and scaling: How smart would ChatGPT with x100 compute be? Are 
Humans in the same sample-complexity class as ChatGPT? 



In more mature fields 

Science on the formality scale  

Neuroscience 
Biophysics 

Deep Learning 
Condensed 
 Matter 

High Energy 

Astrophysics 

Common Formalism 
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Partial List of Theoretical Techniques 
In Deep learning 

Random Matrix Theory 
Gaussian Process  
(Deep) Linear models 
Saad & Sola  
DMFT 
Stat. Mech. 
Spin-Glass for Capacity 
Stochastic Processes in time 
Stat. Learning Theory 
One-Step GD 
….



1.  Generic formalism [not conditioned on one-trainable layer, width, etc..] 

2. Physics style [approximations, typical case thinking, no special focus on 
exact asymptotic limits] 

3. Fundamental Science  [Prioritize understanding, long-term] 

4. Bottom-up/Microscopic [as opposed to biological/data-science 
approaches] 

5. Expanding the toolkit [Replicas, Diagrams, RG, Field-Theory, Representation-
Theory,..]

Our emphasis 



Collaborators  

Moritz Helias Noa RubinInbar Seroussi Gad Naveh

Learning curves for deep neural network a gaussian field theory approach Cohen, Malka, ZR  (2019)  

Separation of scales + thermodynamic description of feature learning in some CNNs Seroussi, Naveh, ZR (2021)   

Grokking as a First Order Phase transition in two layer Neural Networks Rubin, Seroussi, ZR  (2023) 

Wilsonian Renormalization of Neural Network Gaussian Processes Howard, Maiti, Jefferson, ZR  (2024) 

Towards Understanding Inductive Bias In Transformers…. Lavie, Gur-Ari, Ringel (2024) 

A unified approach to feature learning in Bayesian Neural Networks Rubin, Seroussi, ZR, Helias (2024)  

 

Itay Lavie



Strategy I

 Let’s first understand equilibrium/Bayesian



Grounds
1. True out-of-equilibrium physics is extremely challenging… 

2. While life is an inherently out-of-equilibrium phenomena, there is little reason 
to think deep learning is an inherently out-of-equilibrium. 

3. DNNs are often over-parametrized, no reason to expect Glassy-behavior or 
exponentially large equilibrium times. SGD has been argued to be roughly 
Bayesian*. 

4. A lot of the formalism and approximations generalize to dynamics via MSRDJ.  

5. Equilibrium relates to Bayesian learning, which is a holy grail in inference. 

* e.g. C. Mingard  et. al. 2021



Equilibrium and Bayesian 

z(x) = DNNθ(x) ·θ = − γθ − ∂θL + ξ

Langevin training with weight decay (𝛄)  

and noise with variance T

(x1, y1) . . . (xn, yn) L[z] =
P

∑
μ=1

(z(xμ) − yμ)2

2

Zt→∞ = ∫ dθe−(L[z]+γ|θ|2/2)/T = ∫ dθe− γ |θ |2
2T e−L[z]/TEq
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m

Gaussian Weight Prior Likelihood under noisy observations 
With variance T

Ba
ye

si
an

 
In

te
rp

re
ta

tio
n



Strategy II

Fields rather than weights



On random/at-init networks 

The field theory viewpoint 

zw,a(x) =
N

∑
c=1

acErf(wT
c x) x ∈ R2

+

Random Weights ( )ac, wc

Random Function

Cohen, Malka, ZR (2019) ; Halverson, Maiti, Stoner (2020); Helias Dahmen (2020) 

K(x, x′￼) = ⟨zw,a(x)zw,a(x′￼)⟩uniform(w,a) G(x, x′￼)
Kernel Green’s function



Random DNNs induce a probability on function Space

                                P[ f ] = ∫
d−1/2

−d−1/2

Dw11 . . . ∫
N−1/2

−N−1/2

Da1 . . δ [f( . ) − zw,a( . )]

Narrow [N=5]
Wide [N=500]

zw,a(x) =
N

∑
c=1

acErf(wT
c x) x ∈ R2



Random Infinite width DNNs - Free Field Theory

                                P[ f ] = ∫
d−1/2

−d−1/2

Dw11 . . . ∫
N−1/2

−N−1/2

Da1 . . . δ [f( . ) − zw,a( . )]

Width  N=1 N=500

zw,a(x) =
N

∑
c=1

acErf(wT
c x) x ∈ R2

N=5 N=1000

f(o)

P(
f(o

))

f(o) f(o) f(o)



Random Infinite width DNNs - Analytical Results

• Infinite randomized DNNs generate a free field theory (Gaussian Process [R. Neal 1996])  

• zw,a(x) =
N

∑
c=1

acϕ(wT
c x) x ∈ Rd

P[ f ] = ∫
d−1/2

−d−1/2

Dw11 . . . DwNd ∫
N−1/2

−N−1/2

Da1 . . DaNδ [f( . ) − zw,a( . )] ∝N→∞ e− 1
2 ∫ dxdx′￼f(x)K−1(x,y)f(x′￼)

K(x, x′￼) = ⟨zw,a(x)zw,a(x′￼)⟩uniform(w,a)

Entropic term!

• Entropy generates a bias/entropic-force towards network output function which have large 
K(x,x’) eigenvalues. For this simple network, this means a bias towards low order polynomials



Field theory of an infinite network

S = − log(Pprior) +
P

∑
μ=1

[ f(xμ) − y(xμ)]2/2T =
1
2 ∫ ∫ fK−1f +

P

∑
μ=1

[ f(xμ) − y(xμ)]2/2T

Zt→∞ = ∫ dθe−(L[z]+γ|θ|2/2)/T = ∫ Df (∫ dθe− γ |θ |2
2T δ[ f − z]) e−L[ f ]/T ≡ ∫ Dfe−S

Boltzmann
Output dist. Of random DNN

Zt→∞ = ∫ dθe−(L[z]+γ|θ|2/2)/T = ∫ dθe− γ |θ |2
2T e−L[z]/T

It’s A Gaussian Process!



Physical Analogy: Pinned Elastic Membrane with non-
local elastic modulus 

* From Cohen, Malka, ZR (2019) 

Zt→∞ ∝N→∞ ∫ Dfe− 1
2 ∫ ∫ fK−1f− 1

2T ∑P
μ=1 [ f(xμ)−yμ]2

** Silverman (1984); P. Sollich (2001); Bartlett et .al.(2019); Cohen, Malka, ZR (2019); Canatar, Bordelon, Cengiz (2019) 

Elasticity <-> Entropy of weights given f 

Pinning Potential <-> Training data  



Strategy III

Truly analytic predictions require dataset 
averaging



GP limit and Dataset averaging

SN→∞,s.scaling =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) +

P

∑
μ=1

[ f(xμ) − y(xμ)]2/2T =
| f |2

RKHS

2
+

P

∑
μ=1

( f(xμ) − y(xμ))2

2T



GP limit and Dataset averaging 

SN→∞,s.scaling =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) +

P

∑
μ=1

[ f(xμ) − y(xμ)]2/2T =
| f |2

RKHS

2
+

P

∑
μ=1

f(xμ) − y(xμ)2

2T

⟨Zt→∞⟩data
= ⟨∫ e− | f |2RKHS

2 +L/T⟩
data

= ∫ e− | f |2RKHS
2 ⟨e−L/T⟩data

= ∫ e− | f |2RKHS
2 exp (P∫ dμxe−Lx/T)

• Taking an extremum yields standard GPR predictor 

• Disorder average (omitting replicas for clarity)

SN→∞,s.scaling,dataAv. =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/2T



Let’s understand (the absence 
of) overfitting 



Three different treatments of the GP average action

SN→∞,s.scaling,dataAv. = ∫ dμxdμy f(x)K−1(x, y)f(y) − n∫ dμxe−[ f(x)−y(x)]2/T

S... = ∫ dμxdμy f(x)K−1(x, y)f(y) +
n
T ∫ dμx[ f(x) − y(x)]2 − n + O(1/T2)

S... ≈ ∫ dμxdμy f(x)K−1(x, y)f(y) − n log (T + ∫ dμx( f − y)2)

S...,Λ = ∫ dμxdμy f(x)K−1
Λ (x, y)f(y) − n∫ dμxe−[ f(x)−y(x)]2/T(Λ) + O(λΛ/T(Λ))2

≈ ∫ dμxdμy f(x)K−1(x, y)f(y) −
n

T + ⟨ ∫ dμx( f − y)2⟩MF

∫ dμx( f − y)2

2

Perturbative expansion [Cohen, Malka, Ringel (2019)]

Gaussian Discrepancy Approximation [Canatar, Bordelon, Cengiz (2020)]

Renormalization-Group Flow [Howard, Maiti, Jefferson, Ringel (2024)]

a.k.a. Equivalent Kernel [Silverman (1982)]

MSR + Disorder average [Helias, Dahmen 2020 Springer lecture notes in physics.]

Can be view as an RMT result 
Simons et.al. (2023)



“Classical” Thinking - Too much model capacity is bad.

Sargur N. Srihari
Lecture NotesWiki



In the early 90’s

Some saw through this 

Reflection after refereeing paper for NIPS, 
Leo Breiman, 1995, 
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Finite rank degenerate kernels and noisy target 

A classical example of overfitting 

P/d

K(x, x′￼) = λ
d

∑
k=1

ϕk(x)ϕk(x′￼) y(x) = yclean(x) + ξ(x)

Interpolation 
Threshold

From Canatar et. al. 2020



Real Kernels are different 

K(x, x′￼) = λ
d

∑
k=1

ϕk(x)ϕk(x′￼) ⇒
∞

∑
k=1

λkϕk(x)ϕk(x′￼) λk ∝ k−1−α

Also input dimension and input entropy is typically very large.

Main insight — T kills the peak around the interpolation threshold. Many very small 
kernel modes can induce an effective temperature/T. 

TTTT



First step: Large T behavior - Eigenlearning 

SN→∞,s.scaling,dataAv. =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/2T

≈T≫Discrepancy
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) +

P
2T ∫ dμx[ f(x) − y(x)]2

=Diagonalization
1
2 ∑

k

λ−1
k f2

k +
P
T

( fk − yk)2

Learning decouples in kernel eigenfunction space. We learn well eigenfunctions for which

⟨ fk⟩ =
λk

λk + T/P
yk Var[ fk] =

λkT/P
λk + T/P J. B. Simon et. al. 2023 



Low T behavior - Non-perturbative approaches

S... ≈ ∫ dμxdμy f(x)K−1(x, y)f(y) + P log (T + ∫ dμx( f − y)2/2)
≈ ∫ dμxdμy f(x)K−1(x, y)f(y) +

P

T + 1
2 ⟨ ∫ dμx( f − y)2⟩MF

∫ dμx( f − y)2

2

Gaussian Discrepancy Approximation [Canatar, Bordelon, Cengiz (2020)]

S...,Λ = ∫ dμxdμy f(x)K−1
Λ (x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/T(Λ) + O(λΛ/T(Λ))2

Baby version also appeared in [Cohen, Malka, Ringel (2019)]
Renormalization-Group Flow [Howard, Maiti, Jefferson, Ringel (2024)]

SN→∞,s.scaling,dataAv. =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/2T

T->0 Strong interactions

≈T≫Discrepancy
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) +

P
2T ∫ dμx[ f(x) − y(x)]2



Experiments:

https://arxiv.org/pdf/2502.18553



GP limits: Open Questions 

• What lays beyond the Gaussian Discrepancy Approximation? [e.g. Howard et. al. find 
position dependent temperature/ridge] 

• GP Limits of Diffusion Models  

• GP Limits of Physically Informed Neural Networks [some first steps carried in Miron, Seroussi, 
Ringel 2023]



Feature/Representation 
Learning 

AlexNet



Bridging Feature Learning and Mechanistic Interpretation

Theory

Understanding Anthropic’s Golden Gate Claude, Davis, Medium (2024) 

Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet, Anthropic, Transformer-Circuit (2024) 

Practice 

• Rubin, Seroussi, ZR, ICLR, (2023).

Order Parameter: 

Linear super-position of neurons in input/middle layer

Order Parameter: 

super-position of neurons in middle layer



Finite N or MF.Scaling

Feature Learning Regime - Data averaged

• Focus on a two-layer network for simplicity 

• Introduce two auxiliary fields for every layer except the input layer by introducing functional 
delta functions   

• Integrate out all weights expect input layer weights 

z(x) =
N

∑
c=1

acϕ(wT
c x)

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − P∫ dμxe−[ f(x)−y(x)]2/T



A list of actions 

• GP limit, any networks, any depth 

• Two layer DNN 

• Three layer DNN

S =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/T

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

(∫ dμxt(x)ϕ(wT
c x))

2

+ i∫ dμxtf − P∫ dμxe−[ f(x)−y(x)]2/T

S =
d |w(0) |2

2
− i∫ dμx [f̃(x)f(x) + ∑

i

h̃(1)
i (x)h(1)

i (x)] +
1

2N(1) ∑
i

(∫ dμx f̃(x)σ(h(1)
i (x)))

2

+
1

2N(0) ∑
ij

(∫ dμxh̃(1)
i (x)σ(w(0)

j ⋅ x))
2

− P∫ dμxe−[ f(x)−y(x)]2/T



Recovering the NNGP limit 

• As  each individual wc feels t(x) less and less, hence stays in its Gaussian prior 

• However t(x)t(y) see the aggregate effect of all  leading to  

• Integrating out t using square completion we obtain our previous NNGP action for the output 

N → ∞

ϕ(wT
c x)ϕ(wT

c y)

S = ∑
c

d |wc |2

2σ2
w

+
1
2 ∫ dμxdμyt(x)⟨σ2

aϕ(wTx)ϕ(wTy)⟩w∼𝒩t(y) + i∫ dμxtf − . . .
K(x,y)

SN→∞,s.scaling =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/2T

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − P∫ dμxe−[ f(x)−y(x)]2/2T



Are there qualitative performance 
differences between the GP limit 
and feature learning regime?



The case in favor of Gaussian Processes

Novak et. al. 2019 (see also Lee. 2020) 



The case against GPs

• The common lore is that feature learning is an essential ingredient in deep learning.  

• We know that converges to the GP limit only happens when width=N>>P, which is very unrealistic 

• We know of toy settings where GP qualitatively underperforms real DNNs 

• GPs are also very-inefficient at large datasets, as they require inverting a P by P matrix.



Example: staircase learning 

z(x) =
N

∑
c=1

acErf(wT
c x) y(x) = (w* ⋅ x) + ϵ(w* ⋅ x)3

Sample Complexity Question: What is the scaling of P with d, required to learn 90% of the cubic 
component?

x ∈ Rd

Intuition:  

1. The Gaussian Process, being linear in the target, ``learns” the linear part and cubic parts 
separately. For symmetric kernels and datasets, learning the cubic part requires P=d3 

2. The actual DNN, being non-linear in the target, can learn to focus on the  direction based on 
the linear part, so much that the effective data dimension becomes O(1), in which case 
learning a cubic function is not very hard.

w*

E Abbe et. al. 2021



A dash of representation theory 

GP solution and why P = O(d3)

z(x) =
N

∑
c=1

acErf(wT
c x) y(x) = (w* ⋅ x) + ϵ(w* ⋅ x)3 x ∈ Sd

K(x, x′￼) ≡ ⟨z(x)z(x′￼)⟩a,w∼𝒩 = F( |x | , |x′￼| , x ⋅ x′￼) ⇒ K(Ox, Ox′￼) = K(x, x′￼) O ∈ O(d)

K(x, x′￼) = ∑
lm

λlYlm(x)Ylm(x′￼) m ∈ [1..O(dl)]

y(x) = ∑
m∈[1..d]

amY1m(x) + ∑
m∈[1..O(d3)]

cmY3m(x)

Since the cubic part is determined by O(dl) coefficients, which are equally probable in the prior + 
linear part doesn’t help — we find P=O(d^3) data-points are required to fix these coefficients. 

⇒



Beyond GP: Kernel adaptation approximation

Kernel Adaptation [Seroussi (2021) ; also Aitchison (2019), Cengiz (2022), Helias (2024), Mallet (2024)]

∫ ∫ t(x)ϕ(wT
c x)ϕ(wT

c y)t(y) ≈ ∫ ∫ ⟨t(x)⟩MFϕ(wT
c x)ϕ(wT

c y)⟨t(y)⟩MF + ∫ ∫ t(x)⟨ϕ(wT
c x)ϕ(wT

c y)⟩MFt(y)

Backprop effects on input weights KMF(x,y)

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − P∫ dμxe−[ f(x)−y(x)]2/2T

⟨t(x)⟩ =
P
T [⟨ f(x)⟩ − y(x)]

• For kernel scale as order parameter: Li & Sompolinsky PRX (2021) Hanin et. al. (2023) [linear 
FCNs]; Arioso et. al. Nat. ML. (2023);



Kernel Adaptation in some more detail

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − n∫ dμxe−[ f(x)−y(x)]2/T

Data average case

Adaptive Kernel decoupling + Leading order expansion in (f-y)^2/T [a.k.a Equivalent Kernel]

S =
N

∑
c=1

SMF[wc] + SMF[ f, t] = ∫ Dt

N

∑
c=1

SMF[wc] + SMF[ f ]

SMF(w) =
d |w |2

2σ2
w

+
σ2

a

2N ∫ ∫ ⟨t(x)⟩MF⟨t(y)⟩MFϕ(wTx)ϕ(wTy)

SMF( f ) =
1
2 ∫ ∫ fK−1

MF f + L[ f ] ⟨t⟩MF = [KMF + σ2/P]−1y KMF(x, y) = ⟨ϕ(wTx)ϕ(wTy)⟩MF



Kernel Adaptation in some more detail

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − n∫ dμxe−[ f(x)−y(x)]2/T

Data average case

Adaptive Kernel decoupling + Leading order expansion in (f-y)^2/T [a.k.a Equivalent Kernel]

S =
N

∑
c=1

SMF[wc] + SMF[ f, t] = ∫ Dt

N

∑
c=1

SMF[wc] + SMF[ f ]

SMF(w) =
d |w |2

2σ2
w

+
σ2

a

2N ∫ ∫ ⟨t(x)⟩MF⟨t(y)⟩MFϕ(wTx)ϕ(wTy) ≈d,n→∞
1
2

wTΣ−1
MFw

GFL

SMF( f ) =
1
2 ∫ ∫ fK−1

MF f + L[ f ] ⟨t⟩MF = [KMF + σ2/P]−1y KMF(x, y) = ⟨ϕ(wTx)ϕ(wTy)⟩w∼𝒩(ΣMF)



GFL - Gaussian Feature Learning 

Seroussi, Naveh, ZR (2021) 

3 layer non-linear CNN, student teacher setting 



GFL - Real Networks and real datasets 

5 Layer non-linear CNN with pooling on CIFAR-10

Seroussi, Naveh, ZR (2021) 



GFL - Real Networks and Real datasets  

Bordellon et. Al. (2023)



GFL - Evidence from pruning 

VGG-19 [from Torch-vision] pruned by projecting out low latent layer kernel eigenvalues

K. Fisher, M. Helias, Z. Ringel [to be published]

Almost completes with Zhang et .al. 2017



Kernel Adaptation: Exploiting symmetries

S =
N

∑
c=1

SMF[wc] + SMF[ f, t] = ∫ Dt

N

∑
c=1

SMF[wc] + SMF[ f ]

SMF(w) =
d |w |2

2σ2
w

+
σ2

a

2N ∫ ∫ ⟨t(x)⟩MF⟨t(y)⟩MFϕ(wTx)ϕ(wTy) ≈d,n→∞
1
2

wTΣ−1
MFw

GFL

SMF( f ) =
1
2 ∫ ∫ fK−1

MF f + L[ f ] ⟨t⟩MF = [KMF + σ2/n]−1y

For  then solution must obey  

We Thus obtain a non-linear equation in only two variables [a,b].  

y(x) = y(wT
* x) μx = μgx g ∈ O(d) Σ = aP⊥ + bw*wT

*

KMF(x, y) = ⟨ϕ(wTx)ϕ(wTy)⟩w∼𝒩(ΣMF)



Experimental results 

d=50 | Mean-field Scaling | N=Width=1000 |  y(x) = H1(w* ⋅ x) − 0.05H3(w* ⋅ x)

−
lo

g(
P(

w
⋅w

*)
)



Experimental results - Proximity to a phase transition

d=50 | Mean-field Scaling | N=Width=1000 |    y(x) = H1(w* ⋅ x) + 0.05H3(w* ⋅ x)

−
lo

g(
P(

w
⋅w

*)
)



Phase transition can be 1st order - Related to Grokking

GFL/VGA phase GMFL/Coexistence phase

Rubin, Seroussi, Ringel (ICML 2023)



https://arxiv.org/abs/2502.18553

Applications for CNNs (actually simpler)



Feature Learning - Open questions

• Equilibrium Phase diagram of feature learning [GFL, GMFL-I,GMFL-II, Specialization,Feature 
Compression] 

• Feature learning in the Neural Scaling Laws regime. 

• Developing techniques for approaching the interpolation threshold [e.g. Relating SAE with 
Kernel Adaptation] 

• Limitations, implicit biases, and overfitting of feature learning



Or how far can we take such analytic analysis?

Now to the bad news: Explainability paradox 

• Assume we found a set of analytically solvable equations describing the outputs of a DNN 
trained on a specific data-set   

• Analytically solvable means that the complexity of inferring predictions from these 
equations is O(1). 

• Instead of training the DNN, we may just solve the equations. 

• We thus found a simple O(1) training algorithm for this DNN. We also obtained a good 
classifier analytically. Both are highly unlikely….



In contrast in physics,   

1998

Quantization of the hall conductance

σh = n
e2

h
n ∈ N



Theory’s main hope here: Universality/Irrelevance 

• Toy models may capture a greater truth  

• Some aspects of DNNs (e.g. initialization) might decouple (Modularity) 

• Dimensionality reduction - The effective number of hyper-parameters and 
parameters may be much smaller than it seems.  

• The 1st and 3rd items are formalized in physics via the Renormalization 
Group Approach 



The Renormalization Group, Scale-
Freeness, and Neural Scaling Laws 



Collaborators  

Ro Jefferson Moritz Helias Jessica Howard Anindita Maiti

Learning curves for deep neural network a gaussian field theory approach Cohen, Malka, ZR  (2019)  

Wilsonian Renormalization of Neural Network Gaussian Processes Howard, Maiti, Jefferson, ZR  (2024) 

,Universality and finite-data effects in deep neural networks trained on scale-free data. Coppola, Helias, Ringel  (TBP) 

Gorka P. Coppola



The Natural World
Scale-free

Power-laws Universality

RG



Scale-free Phenomena  
Steven Mathey

Google Earth

https://www.researchgate.net/profile/Steven-Mathey?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.youtube.com/watch?v=fi-g2ET97W8


Critical 2d Ising Model

⟨f(0)f(x)⟩ ∝
1
xη

Power laws

⟨fk f−k⟩ ∝
1

k2−η



Ising Model

Ising Model + All local symmetry respecting perturbations

Liquid-Gas at the tri-critical point 

Quantum systems at d-1 with a Z2 symmetry 

…

Universality

⟨f(0)f(x)⟩ = C
1
xη

η = 1/4 C = O(1)



Scale-free phenomena in ML
Scale-free

Power-laws Universality



Power laws in PCA and kernel-PCA

Bahri et. al., Explaining Neural Scaling Laws, 2021



Neural Scaling Laws (Power laws in learning curves)

Kaplan et.  al. Scaling Laws for  Neural Language Models (2020) 



Universality - neural networks

• The fact that many changes to training and hyper-parameters matter only in a few percent 
and changes to architecture drive most innovation. 

• Hyper-parameter transfer protocols  

• Similar scaling curves for LSTMs and Transformers  

Kaplan et.  al. Scaling Laws for  Neural Language Models (2020) 



The Big Questions 

Scale-free

Power-laws Universality

RG

• Is there an input ``scale” associated with power-laws in data and learning? 

• Are power-law indicative of universality?  

• If there is universality, what is the minimal model? 

• How can we adapt RG from physics to ML?



The Renormalization Group 
Approach 101



Wilsonian RG - As a Greedy Algorithm   

• General Setting: We wish to compute some average under some complicated probability  

•  where   are Fourier Modes of some field  

• This is hard, so we focus observables which are function of  (“low energy”/

“IR” sector) and that modes with  are weakly coupled to the rest (“high 
energy”/“UV” sector).  

• We gradually remove large k modes (Decimation) 

 

• We then rescale the k/wave-number/momentum “index” (Rescale space)

P( f1 . . fk . . fΛ) ∝ exp (−S( f1 . . fk . . fΛ)) fk

k < kObservation
k > kObservation

PΛ−1( f1 . . fk . . fΛ) ∝ ∫ dfΛ exp (−S( f1 . . fk . . fΛ)) ≡ exp (−SΛ−1( f1 . . fk . . fΛ−1))



Wilsonian RG - The Flow    
• We found a mapping between the S and S’ actions 

 

• Since we integrate out only a single mode which is weakly coupled to the rest S should 
be very similar to S’.  

• This can be phrased as the following functional diffusion-like equation (Polchinski’s 
equation)  

•  

• In many physically relevant cases, this functional equation simplifies to a finite set of 
non-linear ODEs. 

PΛ−1( f1 . . fk . . fΛ) ∝ ∫ dfΛ exp (−S( f1 . . fk . . fΛ)) := exp (−SΛ−1( f1 . . fk . . fΛ−1)) := exp (−S′￼( f̃1 . . f̃k . . f̃Λ))

dS( f1 . . fk . . fΛ)
dΛ

= L[S]



Wilsonian RG - The Ising Model and Universality 

S[ f(x)] = ∫ dx(∇f(x))2 + m2f2(x) + u∫ dxf(x)4 = ∫ dk[k2 + m2]f2
k + u∫ dxf(x)4

+v∫ dxf 6(x)

u



Wilsonian RG - finite size effects

Detuning From Criticality  Finite Size System = (L)

L

L

|Tc − T |−ν ∝ L

LL

u



Applying RG to Learning: 
Step (1) deep Learning As a Field Theory



Let’s start modestly, from the GP limit

S =
1
2 ∫ dμxdμy f(x)K−1(x, y)f(y) − P∫ dμxe−[ f(x)−y(x)]2/T

SGP[ f(x)] = ∑
k

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2κ2

SGP[ f(x)] ≈ ∑
k

kαf2
k − P∫ dμxe

− ( f(x) − y(x))2

2κ2

Bahri et. al., Explaining Neural Scaling Laws, 2021

• For real world data we often have  



GPR Field Theory Compared to Ising Field Theory

• Different power of k —> Let’s take   

• Different local interaction —> No biggy 

• Discrete summation over k instead of an integral —> Like what happens in a finite system. 

• No translation invariance, k is not momentum, first term is non-local —> A bit scary… 

α = 2

SIsing[ f(x)] = ∫ dk[k2 + m2]f2
k + u∫ dxf(x)4

SGP[ f(x)] = ∑
k

kαf2
k − P∫ dμxe− ( f(x) − y(x))2

2TSGP[ f(x)] = ∑
k

[kα +
P
T

]f2
k − P [∫ dμxe− ( f(x) − y(x))2

2T +
( f(x) − y(x))2

2T ]



The Big  Concrete Questions 

Scale-free

Power-laws Universality

RG

• Can we track the RG flow of  

• How many coupling constants are required to describe the flow?  

• How does the RG flow relate to the learning curve?  

• Is there some form of universality?  

• Are there RG fixed points? 

SGP[ f(x)] = ∑
k

[kα +
P
T

]f2
k − P [∫ dμxe− ( f(x) − y(x))2

2T +
( f(x) − y(x))2

2T ]



Decimation only RG  
(EFT style RG)

Howard, Maiti, Jefferson, ZR (2024)



Wilsonian RG - A Greedy Algorithm   

• General Setting: We wish to compute some average under some complicated probability  

•  where   are Fourier Modes of some field  

• This is hard. So we focus observables which are function of  (“low energy”/

“IR” sector) and that modes with  are weakly coupled to the rest (“high 
energy”/“UV” sector).  

• We gradually remove large k modes (Decimation) 

 

• We then rescale the k momentum “index” (Rescale space)

P( f1 . . fk . . fΛ) ∝ exp (−S( f1 . . fk . . fΛ)) fk

k < kObservation
k > kObservation

PΛ−1( f1 . . fk . . fΛ) ∝ ∫ dfΛ exp (−S( f1 . . fk . . fΛ)) := exp (−SΛ−1( f1 . . fk . . fΛ−1))



Decimation-only RG - Analytical Results 
• Generically, at large input dimension 

SGP[ f(x)] =
Λ

∑
k=1

λ−1
k f2

k − P∫ dμxe− ( f(x) − y(x))2
2T

⇒RG

Λ′￼

∑
k=1

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2T(Λ′￼)

T(Λ′￼) = T +
Λ

∑
Λ′￼

λk

≈Λ′￼≪Λ

Λ′￼

∑
k=1

λ−1
k f2

k + P∫ dμx
( f(x) − y(x))2

2T(Λ′￼)

Intuitively: unlearnable modes look like observation-noise/regulator 

[reminiscent of Bartlett et. al. Benign Overfitting… (2020)] 



Decimation only RG - gained insights 

• A single parameter (  ) tracks the flow! 

• Integrating out leads to a more Gaussian theory (weak coupling regime) 

• Modes with  are effectively frozen to  [perfectly learnable] 

• We may therefore view  as setting the minimal allow  which in physics is the inverse 
system size ( ). RG Machinery for finite-size correction can then be important to 
finite P corrections.

T(Λ′￼)

λ−1
k = kα ≪ P/T(Λ′￼) y(x)

P1/α k
kmin ∝ L−1

Λ′￼

∑
k=1

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2T(Λ′￼) ≈Λ′￼≪Λ

Λ′￼

∑
k=1

λ−1
k f2

k + P∫ dμx
( f(x) − y(x))2

2T(Λ′￼)



Decimation-only RG - Numerical Results 

Λ′￼

∑
k=1

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2κ2
Λ′￼ ≈Λ′￼≪Λ

Λ′￼

∑
k=1

λ−1
k f2

k + P∫ dμx
( f(x) − y(x))2

2κ2
Λ′￼



Revisited 

The Big  Concrete Questions 

• Can we track the RG flow of  

• How many coupling constants are required to describe the flow?  

• Is the RG flow indicative of the learning curve?  

• Is there some form of universality?  

• Are there RG fixed points? 

SGP[ f(x)] = ∑
k

kαf2
k + P∫ dμxe

− ( f(x) − y(x))2

2κ2 Yes at large input dim.

One

P sets the system size. 
Learning curve scales like the loss of a  
theory with P=0 within this “system size: 



Full Wilsonian RG (Adding the 
re-scaling step)

Coppola, Helias, Ringel  (To be published)

SGP[ f(x)] =
Λ

∑
k=1

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2κ2 → ∫ dkλ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2

2κ2

f1 . . fΛ−1 → f1 . . fΛ k → kΛ/Λ′￼



The technical challenges 

• The theory has a background field (y(x)) 

• The average of f(x) scales differently than the std. under-rescaling  

• Due to lack of locality, seemingly standard interaction terms contain delta functions in 
addition to the trivial one from field-theory  

• The scaling of Feynman diagrams becomes trickier and doesn’t trivially depend on the naive 
operator scaling dimension.    

δ(k1 + k2 + k3 + k4)



A quick overview of preliminary results

SGP[ f(x)] =
Λ

∑
k=1

λ−1
k f2

k − P∫ dμxe
− ( f(x) − y(x))2 + u( f(x) − y(x))2

2κ2GPR with MSE+MQE+large ridge:

Large-P/UV universality/asymptotic-freedom:  

Most reasonable perturbation to the model vanish at large P

Learning Curves from scaling dimensions:  

Simple relations exist between 1/P expansion of the learning 
curves with the scaling dimensions obtained from RG



The Big  Concrete+next Questions 

• Can we track the RG flow of  

• How many coupling constants are required to describe the flow?  

• Is the RG flow indicative of the learning curve?  

• Is there some form of universality?  

• Are there useful RG fixed points? 

• Is there a minimal model which faithfully captures large P behavior of a realistic 
network?  

• Can importing RG machinery help us derive scaling laws in the feature learning regime?

SGP[ f(x)] = ∑
k

kαf2
k + P∫ dμxe

− ( f(x) − y(x))2

2κ2 Yes at large input dim.

One or few at large P

P sets the system size  + Loss=“Pscaling-dimensions“

Yes but only at large P (most perturbations are RG-relevant)

Still checking this.  



Thank you for your attention!   

Join the phys4ml mailing list -  

get your work emailed to 120+ physicists! 

https://lists.fz-juelich.de/mailman/listinfo/phys4ml 

Read and gives us comments on our review

https://arxiv.org/abs/2502.18553

https://lists.fz-juelich.de/mailman/listinfo/phys4ml


Extra slides



Adaptive Kernel Formulation 

SMF(w) =
d |w |2

2σ2
w

+
σ2

a

2N ∫ ∫ ⟨t(x)⟩MF⟨t(x′￼)⟩MFϕ(wTx)ϕ(wTx′￼) ≈d,n→∞
1
2

wTΣ−1
MFw

SMF( f ) =
1
2 ∫ ∫ fK−1

MF f + L[ f ] ⟨t⟩MF = [KMF + σ2/n]−1y

SMF(w) =
d |w |2

2σ2
w

+
σ2

a

2N ∫ ∫ ⟨t(x)⟩MF⟨t(x′￼)⟩MFϕ(wTx)ϕ(wTx′￼)

⟨t(x)⟩MF = bH1(wT
* x) + cH3(wT

* x) 𝑦(𝒙) = 𝐻1(𝒘∗ ⋅ 𝒙) + 𝜖𝐻3(𝒘∗ ⋅ 𝒙 )

We find that the following ansatz for t(x) works at high dimension 

Calculating the integrals in  yields (also at high dimension) the decoupled actions SMF(w)

SMF(wTw⊥,*) =
d |wTw⊥,* |2

2σ2
w

𝒮[𝑤 ⋅ 𝑤∗] = 𝑑 (𝑤 ⋅ 𝑤∗)2

2𝜎2
𝑤

−
2𝑛2𝜎2

𝑎

𝜋𝜎4𝑑𝑁
(𝑤 ⋅ 𝑤∗)2

1 + 2(𝜎2
𝑤 + (𝑤 ⋅ 𝑤∗)2)

𝑏 −
2𝑐(𝑤 ⋅ 𝑤∗)2

1 + 2(𝜎2
𝑤 + (𝑤 ⋅ 𝑤∗)2)

2

Our ” "  Landau theory ; ϕ6 ϕ = wT
* w



Theory - Experiment comparison 

d = 150 β N = 700βn = 3000β

* Note that   - We find a change in complexity class! neffective = n/σ2 ∝ d

σ2 ∝ β FCN at MF-scaling

GFL/VGA phase GMFL/Coexistence phase



Summary

S = ∑
c

d |wc |2

2σ2
w

+
σ2

a

N

N

∑
c=1

∫ dμxdμyt(x)ϕ(wT
c x)ϕ(wT

c y)t(y) + i∫ dμxtf − n∫ dμxe−[ f(x)−y(x)]2/T

Spectral Bias [Canatar et. Al.]

Large N, large d

EK limit and beyond

Large N, large T

Beyond Spectral Bias  
Using Wilsonian RG

Multispectral kernel

Adaptive Kernel 

N ∝ n

Kernel Scaling

standard-scaling
N ∝ n

Equilbrium Grokking 
And phase transition  
in representation learning

Sample Complexity  
Effects and Soft Grokking

Erf+Beyond VGA
ReLU within VGA



This time within VGA [ ] and with two layer ReLU networksS[w] ≈ wTΣ−1
MFw

Further evidence for complexity change

LearnabilitiesTarget 

Network f(x) = ∑
c

acReLU(wT
c x)

+ Mean-field scaling

Scale-up factor Scale-up factor

A unified approach to feature learning in Bayesian Neural Networks Rubin, Seroussi, ZR, Helias (In preparation)  N = 750β d = 96β

(β) (β)



Kernel Adaptation predicts change in complexity class

Noa Rubin, Zohar Ringel, Inbar Seroussi, Moritz Helias (2024) HiLD workshop


