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Outline:
● Disorder

What are the connections between machine learning and disordered systems? 
Prototypical types of disorder/inhomogeneity, Ising model, Ising spin glass, Ising random field, 
the φ4 spin glass, replica theory and the overlap order parameter, intuitive connections with 
machine learning.
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● Quantum field-theoretic (and statistical-mechanical) machine learning 
How can we unify statistical mechanics, quantum field theory, and machine learning under a 
common mathematical framework? 
The (local) Markov property, Hammersley-Clifford theorem, Nelson construction of quantum 
field theories, φ4 Markov fields, φ4 multi-agent systems, reinforcement learning,  φ4 neural 
networks and their generalization of the Bernoulli-Bernoulli restricted Boltzmann machine [see 
Nobel Prize 2024 (Hinton)], applications.
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● Phase transitions of machine learning algorithms
Are there *genuine* phase transitions in neural networks? 
Second-order phase transitions during the learning process of neural networks, order 
parameters, scaling and universality in probabilistic machine learning, a quest for unification of 
machine learning under universality classes, numerical examples.
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The random field Ising model

Symmetric Phase Broken symmetry phase

Random Magnetic Fields, Supersymmetry, and Negative Dimensions,G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744, (1979).

Parisi-Sourlas Supersymmetry in Random Field Models, A. Kaviraj, S. Rychkov, E. Trevisani, Phys. Rev. Lett. 129, 045701, (2022).
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Symmetric phase Broken symmetry phase

The Ising spin glass
(the Edwards-Anderson model)

Evolving 
randomly oriented configurations

Frozen 
randomly oriented configuration

The Ising spin glass satisfies gauge invariance properties. For every nonzero function f:
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The φ4 glass

Disordered Lattice Glass ϕ4 Quantum Field Theory , D. Bachtis, arxiv2407.06569.
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Disordered Lattice Glass ϕ4 Quantum Field Theory , D. Bachtis, arxiv2407.06569.



The φ4 glass

Proof that the φ4 spin glass reduces to the Edwards-Anderson model

Disordered Lattice Glass ϕ4 Quantum Field Theory , D. Bachtis, arxiv2407.06569.
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Why neural networks resemble disordered systems?

Disordered systems and machine learning



The Ising spin glassThe random field Ising model



The Ising spin glassThe random field Ising model

Neural networks, e.g. the restricted Boltzmann machine, have a 
Hamiltonian that looks like this:

wij
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How can we unify statistical mechanics, quantum field theory, and 

machine learning under a common mathematical framework?

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).
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We require some form of representation to construct a probability 
distribution. We are going to use a finite set 𝛬 that we express as a 

graph 𝐺(𝛬,e) where e is the set of edges in 𝐺.

A clique c is a subset of 𝛬 where the points are pairwise connected. A maximal clique is 
a clique where we cannot add another point that is pairwise connected with all the 

points in the subset.

Quantum field-theoretic machine learning
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On the square lattice a 
maximal clique is a 

two-site edge.

On a triangular lattice a 
maximal clique is a triangle.

On the square lattice with 
both diagonals a maximal 

clique is a square.

On the bipartite graph, 
which represents standard 

neural network 
architectures a maximal 
clique is defined by an 

edge connection.

Quantum field-theoretic machine learning
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

Quantum field-theoretic machine learning
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A probability distribution is a product of strictly positive and appropriately normalized factors (or 
potential functions) ψ:

1. Factors are the fundamental building blocks of probability distributions. 

2. By controlling the factors we are able to control the probability distribution.

Quantum field-theoretic machine learning
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Quantum field-theoretic machine learning
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Quantum field-theoretic machine learning
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Quantum field-theoretic machine learning
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Hammersley-Clifford theorem

A strictly positive distribution p satisfies the local Markov property of an 
undirected graph 𝐺:

if and only if p can be represented as a product of strictly positive potential 
functions ψc over 𝐺, one per maximal clique c, i.e.

where Z is the partition function and φ are all possible states of the system.

Quantum field-theoretic machine learning
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The φ4  lattice field theory is, by definition, formulated on a square lattice which is 
equivalent to a graph 𝐺(𝛬,e). A non-unique choice of potential function per each 

maximal clique is:

The probability distribution is expressed as a product of strictly positive potential 
functions ψ, over each maximal clique:

The φ4 theory satisfies Markov properties and it is therefore a Markov random field.

Quantum field-theoretic machine learning
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The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

Quantum field-theoretic machine learning
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The Markov property in a Markov chain

φ1 φ2 φ3 φ4 φ5

A Markov random field satisfies the Markov property in high-dimensions

φ8

φ5

φ2

φ4 φ6

φ1 φ3

φ7 φ9

Quantum field-theoretic machine learning
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Representation

Hammersley-Clifford theorem

Proofs

Markov fields on finite graphs and lattices, J. M. Hammersley, P. Clifford, (1971).

1) A theorem about random fields, G. R. Grimmett, Bulletin of the London Mathematical Society, 5 (1): 
81–84 (1973).

2) Generalized Gibbs states and Markov random fields, C. J. Preston, Advances in Applied Probability, 5 
(2): 242–261, (1973).

3) Markov random fields and Gibbs random fields, S. Sherman, Israel Journal of Mathematics, 14 (1): 
92–103, (1973).

4) Spatial interaction and the statistical analysis of lattice systems, J. Besag, Journal of the Royal 
Statistical Society, Series B, 36 (2): 192–236,, (1974).
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Representation

Construction of quantum fields from Markoff fields, E. Nelson, J. Funct. Anal. 12, 97 (1973)

Constructive field theory (see also J. Halverson talks!)
based on Garding-Wightman 

Markov Property

Reflection Positivity

Reflection Positivity Then and Now, A. Jaffe, arxiv:1802.07880 (2018)

Algebraic Quantum Field Theory

An Algebraic Approach to Quantum Field Theory, R. Haag, D. Kastler, Journal of Mathematical 
Physics, 5 (7), (1964)
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Quantum field-theoretic machine learning
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Having established that certain physical systems are Markov random 

fields, how do we use them for machine learning?

Exactly in the same way as any other machine learning algorithm...

Quantum field-theoretic machine learning
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We will now implement the lattice φ4 field theory/Ising model to represent 

interactions of agents who aim to buy or sell a stock in the context of financial 

markets.

Quantum field-theoretic machine learning
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Lattice ϕ4 field theory as a multi-agent system of financial markets, D. Bachtis, arxiv:2411.15813.

D. Bachtis, D. Berman, in preparation.



40

We will now implement the lattice φ4 field theory/Ising model to represent 

interactions of agents who aim to buy or sell a stock in the context of financial 

markets.

Quantum field-theoretic machine learning

s
1

s
2

s
3

s
4

We want to model two interactions:

1) People tend to imitate the behaviour of their neighbours



41

We will now implement the lattice φ4 field theory/Ising model to represent 

interactions of agents who aim to buy or sell a stock in the context of financial 

markets.

Quantum field-theoretic machine learning

s
1

s
2

s
3

s
4

We want to model two interactions:

1) People tend to imitate the behaviour of their neighbours

2) People are influenced by the opinion of the majority or the minority
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Our model will then represent two types of agents

1) Fundamentalists, agents who invest based on the fundamental value of an 

asset. For example, a fundamentalist might decide to buy an asset when it is 

undervalued or sell an asset when it resides above the fundamental value.

Quantum field-theoretic machine learning
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Our model will then represent two types of agents

1) Fundamentalists, agents who invest based on the fundamental value of an 

asset. For example, a fundamentalist might decide to buy an asset when it is 

undervalued or sell an asset when it resides above the fundamental value.

2) Chartists or noise traders, agents who invest based on emerging trends (i.e. 

by relying on “charts”) rather than the fundamental value of an asset. A 

chartist who is invested in an undervalued asset might decide to 

spontaneously sell the asset due to a momentary and emerging trend.

Quantum field-theoretic machine learning
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Quantum field-theoretic machine learning

We want to model two interactions:

1) People tend to imitate the behaviour of their neighbours

This information already exists in the Hamiltonian of the Ising model or the lattice 

action of the φ4 theory due to the Z
2

 symmetry breaking phase transition!
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Quantum field-theoretic machine learning

We want to model two interactions:

1) People tend to imitate the behaviour of their neighbours

This information already exists in the Hamiltonian of the Ising model or the lattice 

action of the φ4 theory due to the Z
2

 symmetry breaking phase transition!



46

Quantum field-theoretic machine learning

We want to model two interactions:

2)  People are influenced by the opinion of the majority or the minority
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Quantum field-theoretic machine learning

We want to model two interactions:

2)  People are influenced by the opinion of the majority or the minority

● This information does not exist in the Hamiltonian or lattice action and we 

need to explicitly introduce it.
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Quantum field-theoretic machine learning

We want to model two interactions:

2)  People are influenced by the opinion of the majority or the minority

● This information does not exist in the Hamiltonian or lattice action and we 

need to explicitly introduce it.

● We observe that the intensive magnetization, i.e. the sum over all the 

degrees of freedom in the lattice, represents the opinion of the majority. 
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Quantum field-theoretic machine learning

We want to model two interactions:

2)  People are influenced by the opinion of the majority or the minority

● This information does not exist in the Hamiltonian or lattice action and we 

need to explicitly introduce it.

● We observe that the intensive magnetization, i.e. the sum over all the 

degrees of freedom in the lattice, represents the opinion of the majority. 

● We can then introduce a term in the Hamiltonian that forces an agent to take 

into consideration the opinion of the majority or minority via the 

magnetization.



50

Quantum field-theoretic machine learning

The physical behaviour that we obtain from the multi-agent φ4 model of financial 

markets:
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Quantum field-theoretic machine learning

The φ4 multi-agent model can reproduce nontrivial aspects of financial markets, 

called stylized facts, such as volatility clustering and fat-tailed probability 

distribution of returns.
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 To employ quantum field-theoretic or statistical mechanical algorithms for other machine 
learning tasks, we need to define a form of asymmetric distance between two probability 

distributions, called the Kullback-Leibler divergence:

Quantum field-theoretic machine learning

A B
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We can use the first definition of the Kullback-Leibler divergence:

to minimize the asymmetric distance between our model probability distribution p and an 
unknown empirical probability distribution q for which we have data available.

Quantum field-theoretic machine learning

1.
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We can use the first definition of the Kullback-Leibler divergence:

to minimize the asymmetric distance between our model probability distribution p and an 
unknown empirical probability distribution q for which we have data available.

Quantum field-theoretic machine learning

We can use the second definition of the Kullback-Leibler divergence:

to minimize the asymmetric distance between our model probability distribution p and a known 
empirical probability distribution q for which we do not have data available.

1.

2.
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 Let’s first investigate the case of a known empirical probability distribution q for which we do 
not have data available.

We want to minimize the Kullback-Leibler divergence.

We consider that q(φ) is the probability distribution of a system described by a new 
Hamiltonian or action A.

By minimizing the KL divergence we will make the two probability distributions equal. We 
can then use the probability distribution p(φ;θ) of the φ4 theory to draw samples from the 

target distribution q(φ).

Quantum field-theoretic machine learning
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We substitute the two probability distributions in the Kullback-Leibler divergence to obtain:

There are two important observations on the above equation:
1. It sets a rigorous upper bound to the calculation of the free energy of the system with action A.
2. The bound is dependent entirely on samples drawn from the distribution p(φ;θ) of the φ4 theory.

Gibbs-Bogoliubov-Feynman Inequality

<> denotes expectation value

Quantum field-theoretic machine learning
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As a very simple proof-of-principle demonstration, we can consider a disordered lattice action 
of the φ4 theory:

that is able to represent more intricate actions, such as actions that include longer range 
interactions

Quantum field-theoretic machine learning
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What if the target probability distribution q(φ) is unknown?

Quantum field-theoretic machine learning

We can use the first definition of the Kullback-Leibler divergence:

to minimize the asymmetric distance between our model probability distribution p and an 
unknown empirical probability distribution q for which we have data available.
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We consider as an example a problem of image segmentation:

Quantum field-theoretic machine learning

We are searching for the optimal values of the coupling constants in the φ4 action 
that are able to reproduce the data as configurations in the equilibrium 

distribution.
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Quantum field-theoretic machine learning



φ4 Markov random field

φ4  neural network

Hidden layer

Visible layer

Quantum field-theoretic machine learning

So far we have investigated the behaviour of a

We are now interested in investigating the behaviour of a
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φ4  neural network

Hidden layer

Visible layer

Quantum field-theoretic machine learning

The Boltzmann probability distribution of the φ4 neural network is now a joint 
probability distribution of the visible φ and the hidden h variables:
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From the joint probability distribution of the φ4 neural network

We are able to marginalize out variables and derive marginal probability distributions 
p(φ;θ) and p(h;θ):  

Hidden layer

Visible layer

Quantum field-theoretic machine learning
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We now want to minimize the asymmetric distance between the empirical probability 
distribution q(φ) and the marginal probability distribution p(φ;θ):

In other words, we want to reproduce the dataset in the visible layer. The hidden 
layer will then uncover dependencies on the data.

Quantum field-theoretic machine learning
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Hidden layer

Visible layer

Quantum field-theoretic machine learning
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Hidden layer

Visible layer

Examples of the coupling constants wij with j fixed

Quantum field-theoretic machine learning
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The φ4 neural network:

 is a generalization of other neural network architectures:

Gaussian-Gaussian 
restricted Boltzmann 

machine:

bi=nj=0

Gaussian-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=0
hj binary

Bernoulli-Bernoulli 
restricted Boltzmann 

machine:

bi=nj=mj=ai=0
φι,hj binary

φ4-Bernoulli restricted 
Boltzmann machine:

mj=nj=0
hj binary

φ4 equivalence with the Ising model (under an appropriate limit)

Quantum field-theoretic machine learning

Quantum field-theoretic machine learning, D. Bachtis, G. Aarts and B. Lucini, Phys. Rev. D 103, 074510, (arXiv:2102.09449).



Are there “genuine” phase transitions in the learning 
process of neural networks?

Cascade of phase transitions in the training of energy-based models ,D. Bachtis, G. Biroli, A. Decelle, B. Seoane, Advances in 
Neural Information Processing Systems 37 (NeurIPS 2024).



We saw that an order parameter is a quantity which can be used to distinguish between 
two phases of a system. For example in the case of the Ising model, the order 

parameter was the magnetization.

Phase transitions of machine learning algorithms



We saw that an order parameter is a quantity which can be used to distinguish between 
two phases of a system. For example in the case of the Ising model, the order 

parameter was the magnetization.

Phase transitions of machine learning algorithms

Symmetric

Broken symmetry



We consider again the case of the Bernoulli-Bernoulli restricted Boltzmann machine:

Phase transitions of machine learning algorithms

And for simplicity we assume that αι=bj=0, and that the 
visible and hidden variables take values of {-1,1}

Hidden layer

Visible layer



To study mathematically the behaviour of the restricted Boltzmann machine:

1) We consider that important information about the learning process of a neural 
network is evidently encoded within the weight matrix. We are going to extract this 
information via a singular value decomposition.

2) We rely on the implementation of techniques from statistical mechanics, such as 
the replica method to infer the phase diagram of the neural network and, 
equivalently, extract information about the order parameters which characterize the 
phases of the system.  

Phase transitions of machine learning algorithms

Thermodynamics of Restricted Boltzmann Machines and related learning dynamics, A. Decelle, G. Fissore, C. Furtlehner,  J Stat 
Phys 172, 1576–1608 (2018).



Phase transitions of machine learning algorithms

Phase diagram for the very first phase transition of an RBM:
σ is the variance of the weight matrix

wa is the largest eigenvalue as obtained from a SVD

Thermodynamics of Restricted Boltzmann Machines and related learning dynamics, A. Decelle, G. Fissore, C. Furtlehner,  J Stat 
Phys 172, 1576–1608 (2018).



Phase transitions of machine learning algorithms

epochs
Cascade of phase transitions in the training of energy-based models ,D. Bachtis, G. Biroli, A. Decelle, B. Seoane, Advances in 

Neural Information Processing Systems 37 (NeurIPS 2024).



Phase transitions of machine learning algorithms

If a phase transition is “genuine” it should persist also to 
the thermodynamic limit



Phase transitions of machine learning algorithms

To investigate the scaling of the phase transitions one can progressively 
rescale the dataset:

28*28 56*56
14*14
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Phase transitions of machine learning algorithms

Numerical data are consistent with a mean-field universality 
class



Phase transitions of machine learning algorithms

Phase transitions might help us understand how machine 
learning algorithms function, but can we extract any other 

useful information from them?



Phase transitions of machine learning algorithms

Additional useful information about the learning process relates to the emergence of a 
critical slowing down effect:



Phase transitions of machine learning algorithms

A long-term ambition of studying phase transitions of neural networks is a potential
 quest for unification of machine learning algorithms based on universality classes:

Ising universality class:
Ising model, critical opalescence, liquid to gas 

phase transition, and many more…



Phase transitions of machine learning algorithms

A long-term ambition of studying phase transitions of neural networks is a potential
 quest for unification of machine learning algorithms based on universality classes:

Ising universality class:
Ising model, critical opalescence, liquid to gas 

phase transition, and many more…

Can we simplify the study of machine learning algorithms 
through universality?



Summary:
● Disorder

What are the connections between machine learning and disordered systems? 
Prototypical types of disorder/inhomogeneity, Ising model, Ising spin glass, Ising random field, 
the φ4 spin glass, replica theory and the overlap order parameter, intuitive connections with 
machine learning.

● Quantum field-theoretic (and statistical-mechanical) machine learning 
How can we unify statistical mechanics, quantum field theory, and machine learning under a 
common mathematical framework? 
The (local) Markov property, Hammersley-Clifford theorem, Nelson construction of quantum 
field theories, φ4 Markov fields, φ4 multi-agent systems, reinforcement learning,  φ4 neural 
networks and their generalization of the Bernoulli-Bernoulli restricted Boltzmann machine [see 
Nobel Prize 2024 (Hinton)], applications.

● Phase transitions of machine learning algorithms
Are there *genuine* phase transitions in neural networks? 
Second-order phase transitions during the learning process of neural networks, order 
parameters, scaling and universality in probabilistic machine learning, a quest for unification of 
machine learning under universality classes, numerical examples.
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Thank you for your attention!


