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Inductive bias and feature-learning,
two challenges understanding  
DNNs

Ard Louis
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William of Ockham
1287-1347

Inductive bias and feature learning

1. Two questions about generalisation
2. Inductive bias towards simplicity
3. Inductive bias and Zipf ’s law
4. Feature learning
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Generalization for Neural Nets - Zhang et. al. (2017)

Figure: Source: Zhang et. al. (2017)

Boris Hanin Deep Learning Lecture 21 - 11/06/18

Expressivity: overparameterised DNNs can fit randomized data with zero error 

Understanding deep learning requires rethinking generalization, C. Zhang et al,  arXiv:1611.03530
(5425 cites by  March 2025)

Randomize labels on CIFAR-10

Why do they learn and not just  just memorise? 
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Drawing an elephant with four complex parameters
Jürgen Mayer; Khaled Khairy; Jonathon Howard; American Journal of Physics  78, 648 (2010)

More parameters than data points is bad?

F. Dyson,   A meeting with Enrico Fermi, Nature. 427, 287 (2004)

Enrico Fermi
1901-1954

With four parameters I can fit an 
elephant, and with five I can make him 
wiggle his trunk
 -- John von Neuman  (according to 
Fermi) 

John von Neumann
1903-1957

5 parameters

4 parameters

Freeman Dyson
1923-2020
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Central theoretical conundrum: why do DNNs choose the solutions that work?  

polynomial fit : y(x) = a0 + a1x + a2x2 + a3x3 + … anxn 
 
compared to 

simple DNNs (FCN with layer width of 1000 units) 

Inductive bias:  why do overparameterized DNNs choose the solutions they do? 
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Central theoretical conundrum: why do DNNs choose the solutions that work?  
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Classical learning theory

M Belkin, PNAS 116.15849 (2019) 
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wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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The application to DNNs was first shown in [23]. We note that the input-output map of interest is not
the map from inputs to DNN outputs, but rather the map from the network parameters to the function
f it produces on inputs X which was described in the main text in Definition 2.1. The prediction of
Eq. 4 for a DNN with parameters sampled randomly (from, for example, truncated i.i.d. Gaussians) is
that, if the map is sufficiently biased, then the probability of the DNN producing a function f on input
data xn

i=0 drops exponentially with increasing complexity of the function f . Note that technically we
should write f as f |X to indicate the dependence of the function modelled by the DNN on the inputs
X . We also note that the bound of Eq. 4 on its own does not force a map to be biased. It still holds
for a uniform distribution. But if the map is biased, then it will be biased according to Eq. 4.

In [23] it was shown empirically that this very general prediction held for the P (f) of a number of
different DNNs. This was done via direct sampling of the parameters of a small DNN on Boolean
inputs. NNGP calculations also showed a strong bias in more complex systems. In [24] some exact
results were proven for simplified networks, that were also consistent with the bound of Equation (4).
In particular, they proved that for a perceptron with no bias, upon randomly sampling the parameters
(with a distribution satisfying certain weak assumptions), any value of class-imbalance was equally
likely. Because there are many fewer functions with high class imbalance (low “entropy”) than
low class imbalance, and these are also simpler, this implied a bias of P (f) towards certain simple
functions. They also proved that for infinite-width ReLU DNNs, this bias gets monotonically stronger
as the number of layers grows. A different direction was pursued in [25], who showed that, upon
randomly sampling the parameters of a ReLU DNN acting on Boolean inputs, the functions obtained
had an average sensitivity to inputs which is much lower than if randomly sampling functions.
Functions with low input sensitivity are also simple, thus proving another form of simplicity bias
present in these systems.

On the other hand, in a recent paper [66], it was shown that for DNNs with activation functions such
as Erf and Tanh, the bias starts to disappear as the system enters the “chaotic regmie”, which happens
for weight variances above a certain threshold, as the depth grows [67] (note that ReLU networks
don’t have such a chaotic regime). While these hyperparameters are not typically used for DNNs,
they do show that there exist regimes where there is no simplicity bias. Note that the Levin bound
still holds, but P (f) is simply approaching a uniform distribution, and the bound becomes loose for
small complexity. These results are also interesting because, if the bias becomes weaker, then it may
also be the case that the correlation between PB(f |S) and PSGD(f |S) starts to disappear.

Several of these works use an important recent extensions of Neal’s seminal proof [68, 69] – that a
single-layer DNN with random i.i.d. weights is equivalent to a Gaussian process (GP) [70] in the
infinite width limit – to multiple layers and architectures [29, 30, 31, 71, 72].

A bias towards simplicity does not automatically imply good generalisation. Instead certain key
hypotheses are needed about the data, in particular that it is described by functions that are simple (in
a similar sense than the inductive bias). The assumption that a more parsimonious hypothesis is more
likely to be true has been influential since antiquity and is often articulated by invoking Occam’s
razor. However, the fundamental justification for this heuristic is disputed [73]. For the machine
learning literature see e.g. [74, 75, 76, 77]. For links between the razor and AIT/Solomonoff relevant
to Eq. (4), see e.g. [78, 79] for a spirited discussion.

Studies that imply that the data is somehow “simple” include an influential paper by Lin and
Tegmark [26] invoking arguments mainly from statistical mechanics to argue that deep learning
works well because the laws of physics typically select for function classes that are “mathematically
simple”, and so easy to learn. For the much used MNIST data set, Spigler et al. [28] show that while
the data is embedded in a 282 = 784 dimensional manifold, it has a much lower effective dimension
deff = 15. Individual numbers have effective dimensions that are even lower, ranging from 7 to
13 [80]. So the functions that fit MNIST data are much simpler than those that fit random data [27].

A.3 Bayesian formulation of the relation between bias of untrained networks and trained
networks

The effect of the bias in P (f) on a network conditioned on a training set S can be formalised in
a Bayesian framework. To apply Bayesian inference for supervised learning (or function approx-
imation), we need to begin with a prior over functions, which in this case is simply P (f). If our
‘observation’, that is the training set S, corresponds to the exact values of the function which we
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Prior over functions 

wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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regime as follows: Given that DNNs can memorise randomly labelled image datasets, which leads to
poor generalisation, why do they behave so differently on correctly labelled datasets and select for
functions that generalise well? The solution to this conundrum must be that SGD trained DNNs have
an inductive bias towards functions that generalise well (on structured data).

The possibility that SGD is not just good for optimisation, but is also a key source of inductive bias
has generated an extensive literature. One major theme concerns the effect of SGD on the flatness of
the minima found, typically expressed in terms of eigenvalues of a local Hessian or related measures.
A link between better generalisation and flatter minima has been widely reported [8, 9, 10, 11, 12, 13]
(but see also [14]). A well-known result [9] is that DNNs trained with SGD find "flatter" minima for
smaller batch sizes, and also generalise better than identical models trained with large batch SGD
(by up to ⇠ 5%). Nevertheless, the overall differences between SGD and full-batch gradient descent
(GD) are still relatively small (see e.g. [11]). Moreover these batch-size effects can disappear when
the learning rate is also adjusted [15, 16, 17].

Direct theoretical work on SGD has also generated a large and sophisticated literature. For example,
in [18] it was demonstrated that SGD finds the max-margin solution in unregularised logistic regres-
sion, whilst it was shown in [19] that overparameterised DNNs trained with SGD avoid over-fitting
on linearly separable data. Recently, [20] proved agnostic generalization bounds of SGD-trained
neural networks. While an impressive theoretical achievement, no empirical test of the tightness of
the bounds is performed. Other recent work [21] suggests that gradient descent performs a hidden
regularisation in normalised weights, but a different analysis suggests that such implicit regularisation
may be very hard to prove in a more general setting for SGD [22]. Overall, while SGD and its related
algorithms are excellent optimisers, there is no consensus on what inductive bias SGD provides for
DNNs. (For further discussion of this SGD related literature see Appendix A).

An alternative approach is to consider the inductive properties of untrained DNNs. Recent theoretical
and empirical work [23, 24, 25] suggests that the probability P (f) that an untrained DNN outputs
a function f upon random sampling of its parameters (typically the weights and biases) is strongly
biased towards “simple” functions with low Kolmogorov complexity (see also Appendix A). A widely
held assumption is that such simple hypotheses will generalise well – think Occam’s razor. Indeed,
many processes modelled by DNNs are simple [26, 27, 28]. If the inductive bias towards simplicity
is preserved throughout training, then this could help explain the DNNs generalisation conundrum.

The effect of bias in an untrained DNN on training can be analysed within a Bayesian inference
framework with P (f) as a prior. Consider supervised learning with training data S corresponding
to the exact values of the function which we wish to infer (i.e. no noise). This corresponds to a
0-1 likelihood P (S|f), indicating whether the data is consistent with the function. Formally, if
S = {(xi, yi)}mi=1 corresponds to the set of training pairs, then P (S|f) = 1 if 8i, f(xi) = yi and 0
otherwise. The posterior probability PB(f |S) follows from Bayes rule:

PB(f |S) =
P (S|f)P (f)

P (S)
. (1)

where, for discrete functions, the marginal likelihood P (S) =
P

f
P (S|f)P (f) =

P
f2C(S) P (f),

with C(S) the set of all functions compatible with the training set. For C(S), that same set of
functions, the posterior probability PB(f |S) = P (f)/P (S). For a fixed S, P (S) is constant, and so
all the bias in PB(f |S) is translated over from the prior P (f).1

We can also calculate the probability PSGD(f |S) that a DNN trained with SGD to zero error on
S, converges on function f . The main question we will explore in this paper is: How similar is
PB(f |S) to PSGD(f |S)? If the two are significantly different, then SGD may provide an important
source of inductive bias. If the two are similar over a wide range of architectures, datasets, and
optimisers, then the inductive bias is primarily determined by the prior P (f) of the untrained DNN.

1.1 Main results summary

We performed extensive sampling experiments to calculate PSGD(f |S). Functions are distinguished
by the way they classify elements on a test set E. We use the Gaussian Processes (GP) approximation
to estimate PB(f |S) for the same systems. Our main findings are:

1This holds exactly for a fixed S, but not upon further averaging over training sets (Appendix ZZ).
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If we wish to infer (i.e. no noise) at some points, then we need a 0-1 likelihood on training data   
wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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P(S) =  marginal likelihood or evidence 

P(f|S) = P(f)/P(S) or 0, so bias in prior translates over to bias in posterior

Functions that fit S

A traditional Pac-Bayes bound in function 

Posterior for functions conditioned on training set S  follows from Bayes rule
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PAC-Bayes bound reproduces learning curve scaling  with m

Guillermo
Valle Perez

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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Figure 4: Comparing different architectures. Learning curves for the test error and
the PAC-Bayes bounds for representative architectures and different datasets. Solid and
dashed line show, respectively, the empirical test error and the PAC-Bayes bounds. The
architectures are FCN, Resnet50, Densenet121, and MobileNetv2. The DNNs were trained
using Adam with batch size 32 to 0 training error. Different architectures show similar
learning curve power law exponents, which are matched well by the PAC-Bayes bound. Note
that we used slightly different y-axis ranges for each dataset, to aid the distinction of different
architectures. The ordering of the PAC-Bayes bound also agrees reasonably well with the
ordering of the true learning curves, when comparing architectures (Desideratum D.3).

The learning curves we observe in the figs above agree with the previous empirical
observations of power law behaviour in learning curves for DNNs, with only a few exceptions,
where we observe a deviation from power law behaviour. In particular the learning curve for
CIFAR10 for batch 32 appears to deviate from a power law on this range of m. However for
batch 256 it shows cleaner power law behaviour (see fig. 12, fig. 13, fig. 14 in appendix E)
that agrees better with the PAC-Bayes bound exponent.

In fig. 8 and fig. 9, shown in appendix D, we present the learning curves for several
variants of ResNets and DenseNets, respectively. Within each family of similar architectures,
the learning curve is even more similar. The PAC-Bayes bound matches the behaviour of the
true error rather closely for the entire range of architectures and datasets used. In particular,
the power law exponent of the PAC-Bayes bound is close to that of the true learning curves
for these 14 different architectures, just as was found in fig. 3 for three representative ones,
showing that our generalization error theory is robust and widely applicable.
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Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Marginal-likelihood bound

1) P(S) measures inductive bias
2) We use infinite width limit GP 

to calculate P(S)
3) No SGD in the bound.
4) P(f) is bias at initialization,
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Leo Breiman 
1928 –  2005

Breiman, L. Reflections after refereeing papers for nips. (1995). 

Reflections After Refereeing Papers for NIPS 15

Our fields would be better off with far fewer theorems, less emphasis on faddish 
stuff, and much more scientific inquiry and engineering. But the latter requires real 
thinking.

For instance, there are many important questions regarding neural networks 
which are largely unanswered. There seem to be conflicting stories regarding the 
following issues:

� W hy don’t heavily parameterized neural networks overfit the data?
� What is the effective number of parameters?
� W hy doesn’t backpropagation head for a poor local minima?
� When should one stop the backpropagation and use the current parameters?

It makes research more interesting to know that there is no one universally best 
method. What is best is data dependent. Sometimes “least glamorous” methods 
such as nearest neighbor are best. We need to learn more about what works best 
where. But emphasis on theory often distracts us from doing good engineering and 
living with the data.

Question 1: Why don’t heavily parameterized neural networks overfit the data?

Question 2:  Given a DNN that works well, what hyperparameters, etc… should we use to
                    get better generalization and why? 

2 questions about generalisation?

Ising models
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"My best guess is divine benevolence [...] Nobody really understands what’s going on. This is 
a very experimental science [...] It’s more like alchemy or whatever chemistry was in the 
Middle Ages.”  -- Noam Shazeer 2024

Deep learning is more like biology -- Zohar Ringel 2025

We should be realistic about what theory can do, think of a jet engine – Boris Hanin 2025

Why can theory offer to understanding DNNs?

11

William of Ockham
1287-1347

Inductive bias and feature learning

1. Two questions about generalisation
2. Inductive bias towards simplicity
3. Inductive bias and Zipf’s law
4. Feature learning

12
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Send to 
hospital?

Fever? Cough? Lost sense 
of smell?

Over 60? Heart 
problem?

Obese? Diabetes?

1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1

0 1 1 1 0 0 0 0

1 1 1 1 1 0 1 1

0 1 1 0 1 0 1 1

A function maps all possible answers to outputs.
n questions;       2n possible answers;   2!!  possible Boolean functions
For n=7            27 = 128 answers;     2128 =3.4 X 1038 possible functions

Bo
ol

ea
n 

fu
nc

tio
n

Given some examples, can we learn the rest of the function ?
E.g. can we learn a full truth table from a partial one?  

Doctor’s truth table for COVID-19 

Boolean functions, an Ising-like model for supervised learning: 

13
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et al., 2017; Saito and Kato, 2017) and quantum state
tomography (Torlai et al., 2017) are among some of the
impressive achievements to reveal the potential of DNNs
to facilitate the study of quantum systems. Machine
learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correc-
tion (Baireuther et al., 2017; Breuckmann and Ni, 2017;
Chamberland and Ronagh, 2018; Davaasuren et al., 2018;
Krastanov and Jiang, 2017; Maskara et al., 2018), es-
timate rates of coherent and incoherent quantum pro-
cesses (Greplova et al., 2017), to obtain spectra of 1/f -
noise in spin-qubit devices (Zhang and Wang, 2018), and
the recognition of state and charge configurations and
auto-tuning in quantum dots (Kalantre et al., 2017). In
quantum information theory, it has been shown that one
can perform gate decompositions with the help of neural
nets (Swaddle et al., 2017). In lattice quantum chromo-
dynamics, DNNs have been used to learn action param-
eters in regions of parameter space where principal com-
ponent analysis fails (Shanahan et al., 2018). Last but
not least, DNNs also found place in the study of quan-
tum control (Yang et al., 2017), and in scattering theory
to learn s-wave scattering length (Wu et al., 2018) of po-
tentials.

A. Neural Network Basics

Neural networks (also called neural nets) are neural-
inspired nonlinear models for supervised learning. As
we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
as linear and logistic regression and soft-max methods.

1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
of a dot product with a set of neuron-specific weights
w(i) = (w(i)

1 , w(i)
2 , . . . , w(i)

d
) followed by re-centering with

input w x

linear nonlinearity
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FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the
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ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
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non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
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ious inputs and a non-linear transformation �i(z) which
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FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the

G. Valle-Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019 

Parameter-function map
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If we randomly sample DNN 
parameters, what Boolean functions 
do we get? 

2"!  possible Boolean functions
For n=7,  Nf = 2128 =3.4 X 1038
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tentials.
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we will see, neural nets can be viewed as natural, more
powerful extensions of supervised learning methods such
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1. The basic building block: neurons

The basic unit of a neural net is a stylized “neu-
ron” i that takes a vector of d input features x =
(x1, x2, . . . , xd) and produces a scalar output ai(x). A
neural network consists of many such neurons stacked
into layers, with the output of one layer serving as the
input for the next (see Figure 34). The first layer in the
neural net is called the input layer, the middle layers are
often called “hidden layers”, and the final layer is called
the output layer.

The exact function ai varies depending on the type of
non-linearity used in the neural network. However, in
essentially all cases ai can be decomposed into a linear
operation that weights the relative importance of the var-
ious inputs and a non-linear transformation �i(z) which
is usually the same for all neurons. The linear trans-
formation in almost all neural networks takes the form
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FIG. 34 Basic architecture of neural networks. (A)
The basic components of a neural network are stylized neu-
rons consisting of a linear transformation that weights the
importance of various inputs, followed by a non-linear activa-
tion function. (b) Neurons are arranged into layers with the
output of one layer serving as the input to the next layer.

a neuron-specific bias b(i):

z(i) = w(i) · x + b(i) = xT · w(i), (117)

where x = (1,x) and w(i) = (b(i),w(i)). In terms of z(i)

and the non-linear function �i(z), we can write the full
input-output function as

ai(x) = �i(z
(i)), (118)

see Figure 34.
Historically in the neural network literature, common

choices of nonlinearities included step-functions (percep-
trons), sigmoids (i.e. Fermi functions), and the hyper-
bolic tangent. More recently, it has become more com-
mon to use rectified linear units (ReLUs), leaky recti-
fied linear units (leaky ReLUs), and exponential linear
units (ELUs) (see Figure 35). Different choices of non-
linearities lead to different computational and training
properties for neurons. The underlying reason for this is
that we train neural nets using gradient descent based
methods, see Sec. IV, that require us to take derivatives
of the neural input-output function with respect to the
weights w(i) and the bias b(i). Notice that the derivatives
of the aforementioned non-linearities �(z) have very dif-
ferent properties. The derivative of the perceptron is zero
everywhere except where the input is zero. This discon-
tinuous behavior makes it impossible to train perceptrons
using gradient descent. For this reason, until recently the
most popular choice of non-linearity was the tanh func-
tion or a sigmoid/Fermi function. However, this choice
of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the
activation function saturates and the derivative of the
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Prior P(f): upon randomly sampling parameters, how likely to find Boolean func=on f?

G. Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019 

Boolean functions for n=7.    27 = 128 possible answers  &  2128⋍3.4 X1038 possible functions

108 samples of 
parameters  
(7,40,40,1) DNN  
(FCN) with ReLU.

Guillermo
Valle Perez

DNNs have an inbuilt Occam’s razor: inductive bias towards simple functions

Simple functions exponentially more likely to occur 

assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

Zipf ’s law
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Prior P(f): upon randomly sampling parameters, how likely to find Boolean function f?

G. Valle Perez, C. Camargo and A.A. Louis, arxiv:1805.08522 – ICLR 2019 

Boolean functions for n=7.    27 = 128 possible answers  &  2128⋍3.4 X1038 possible functions
 
The magic of DNNs: Under supervised learning with |S|=64, there are still 264 ⋍3.4 X1038 ⋍2 X1019 possible 
functions that fit S with zero error.  So why does the DNN chose one that generalizes well?  

108 samples of 
parameters  
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(FCN) with ReLU.
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We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

2

(a) Prior P (f) versus rank. (b) Prior P (f) versus complexity (c) Generalisation error vs complexity

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

(g) Prior P (K) for uniform sampling (h) Prior P (K) for �w = 1 (i) Prior P (K) for �w = 8

FIG. 1: Priors over functions and over complexity (a) Prior P (f) for FCNs on n = 7 Boolean functions, ranked by
probability of individual functions, generated from 108 random samples of parameters ⇥ over a Gaussian Ppar(✓) with eight
standard deviation �w. For the tanh activation functions, the prior changes with increasing �w (b) Prior probability of a
function P (f) versus Lempel-Ziv complexity for the networks from (a). (c) Generalisation error versus Lempel-Ziv complexity of
the target function for two networks from (b) training to zero error on a training set S of size m = 64, with the error calculated
on the remaining |T | = 64 functions. The networks were trained with advSGD [12] on cross-entropy loss for 1000 random
initialisations. Error bars are one standard deviation. (d), (e), (f) Generalisation error versus learned function LZ complexity
scatterplots, for 1000 random initialisations for three target functions from subfigure (c). The dashed vertical line denotes the
target function complexity. The black cross represents the most common learned function. The histograms on top of the plots
show the posterior probability upon training as a function of complexity: PSGD(K|S) while the histograms on the side show the
posterior probability PSGD(✏|S) that a specific generalisation error ✏ is found. (g) shows the prior probability P (K) to obtain a
function of complexity K for uniform random sampling of 108 functions, while (h) and (i) show P (K) for the �w = 1 and
�w = 8 networks respectively. The large difference in these priors helps explain the large variation in DNN performance.

it solves the overparameterisation/large capacity prob-
lem), can we understand how to improve its performance
further? This second order question is what practition-
ers of deep learning typically care about. Differences in
architecture, hyperparameter tuning, data augmentation
etc. . . can indeed lead to important improvements in DNN
performance. Exactly why these tweaks and tricks gen-
erate better inductive bias is often not well understood
either, and is an important subject of investigation. Be-

cause the two questions are often conflated, leading to
confusion, we want to emphasise up front this paper will
focus on the basic first order overfitting conundrum shared
by all overparameterised DNNs. Understanding the basic
reasons for why DNNs don’t routinely overfit may provide
insight into (important) second order questions of how to
improve their performance further.
Learning Boolean functions: a model system

Inspired by a recent call to study model systems by Zde-

17

Theorem 4.1. For a perceptron f✓ with b = 0 and weights w sampled from a distribution which is

symmetric under reflections along the coordinate axes, the probability measure P (✓ : T (f✓) = t) is

given by

P (✓ : T (f✓) = t) =

⇢
2�n

if 0  t < 2n

0 otherwise
.

Proof sketch. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2�n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T ). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.

A consequence of Theorem 4.1 is that the average probability of the perceptron producing a partic-
ular function f with T (f) = t is given by

hP (f)it =
2�n

|Ft|
, (3)

where Ft denotes the set of Boolean functions that the perceptron can express which satisfy T (f) =
t, and h·it denotes the average (under uniform measure) over all functions f 2 Ft.

We expect |Ft| to be much smaller for more extreme values of t, as there are fewer distinct possible
functions with extreme values of t. This would imply a bias towards low entropy functions. By
way of an example, |F0| = 1 and |F1| = n (since the only Boolean functions f a perceptron can
express which satisfy T (f) = 1 have f(x) = 1 for a single one-hot x 2 {0, 1}n), implying that
hP (f)i0 = 2�n and hP (f)i1 = 2�n

/n.

Nevertheless, the probability of functions within a set Ft is unlikely to be uniform. We find that,
in contrast to the overall entropy bias, which is independent of the shape of the distribution (as
long as it satisfies the right symmetry conditions), the probability P (f) of obtaining function f

within a set Ft can depend on distribution shape. Nevertheless, for a given distribution shape, the
probabilities P (f) are independent of scale of the shape, e.g. they are independent of the variance
of the Gaussian, or the width of the uniform distribution. This is because the function is invariant
under scaling all weights by the same factor (true only in the case of no threshold bias). We will
address the probabilities of functions within a given Ft further in Section 4.3.

4.2 SIMPLICITY BIAS OF THE b = 0 PERCEPTRON

The entropy bias of Theorem 4.1 entails an overall bias towards low Boolean complexity. In Theo-
rem B.1 in Appendix B we show that the Boolean complexity of a function f is bounded by1

KBool(f) < 2⇥ n⇥min(T (f), 2n � T (f)). (4)

Using Theorem 4.1 and Equation (4), we have that the probability that a randomly initialised per-
ceptron expresses a function f of Boolean complexity k or greater is upper bounded by

P (KBool(f) � k) < 1� k ⇥ 2�n ⇥ 2

2⇥ n
= 1� k

2n ⇥ n
. (5)

Uniformly sampling functions would result in P (KBool(f) � k) ⇡ 1�2k�2n which for intermediate
k is much larger than Equation (5). Thus from entropy bias alone, we see that the perceptron is much
more likely to produce simple functions than complex functions: it has an inductive bias towards
simplicity. This derivation is complementary to the AIT arguments from simplicity bias (Dingle
et al., 2018; Valle-Pérez et al., 2018), and has the advantage that it also proves that bias exists,
whereas AIT-based simplicity bias arguments presuppose bias.

1A tighter bound is given in Theorem B.2, but this bound lacks any obvious closed form expression.

5

Neural networks are a priori biased towards Boolean functions with low entropy, Chris Mingard, Joar Skalse, Guillermo 
Valle-Pérez, David Martínez-Rubio, Vladimir Mikulik,  Ard A. Louis arxiv:1909.11522

Chris Mingard

P(f): If we randomly sample parameters θ, how likely are we to produce a 
particular function f? 

We can also prove theorems that bias towards simple function gets stronger with more layers.

Proving entropy bias for the perceptron

Entropy bias:

18
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Why simplicity bias? 

19

Two infinite monkey theorems
1) Borel’s infinite monkey theorem – every sequence is equally likely or unlikely 

To type out Hamlet’s 28 letter sequence METHINKS IT IS LIKE A WEASEL
on a typewriter with 27 keys (26 letters + space) would take about 2728 key-strokes. 

Nora S. Martin, Chico Q. Camargo, Ard A. Louis, , Bias in the arrival of variation can dominate over natural selection in Richard Dawkins’ 
biomorphs, PLOS Computational Biology, 20, e1011893. (2024)

For three infinite monkey theorems in the context of evolution see 

2) Algorithmic monkey theorem:  random typing into a computer language 

print 01 50 times
0101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

20
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A.N. Kolgomorov 
1903-1987

G.J. Chaitin 
1947--

01010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101

0111010100110010111101111011010100001000101110101010011010111110111010010100011101110110110111010 

Kolmogorov/Chaitin complexity K(X) is the length in bits of the 
shortest program on a UTM that generates X

K is  universal, (not UTM dependent) because you can always 
write a compiler => O(1) terms. 

K_U(X) = K_W(X) + O(1) ≈  K(X)

K is not computable due to Halting problem.

new intuitions
-- A random number is one for which K(X) ≳ |X|
-- The complexity of a set can be << than complexity of elements of the set

asym
ptotically

simple

complex

Warning: you don’t know for sure that it is complex, t could be encoding π= 3.141592653589793238462 ….. =
11.00100100001111110110101010001000100001011010001100001000110100110 00100110001100110001010001011100000

Formalising the Monkey Intuition using AIT:  Kolmogorov complexity 
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R. Solomonoff 
1926-2009

Intuition: simpler (small K(X)) outputs are much more likely to appear

Solomonoff, R., "A Preliminary Report on a General Theory of Inductive Inference", Report V-131, Zator Co., Cambridge, Ma. Feb 4, 1960, revision, Nov., 1960.  

First term is the biggest one

Sum all binary codes that generate X 
on a prefix machine

It seems to me that the most important discovery since Gödel was the discovery by Chaitin, Solomonoff 
and Kolmogorov of the concept called Algorithmic Probability,. Everybody should learn all about that and 
spend the rest of their lives working on it. 
Marvin Minsky (2014)
https://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s

Formalising the Monkey Intuition using AIT:  Algorithmic Probability 
Algorithmic Probability P(x) = probability a random program on a (prefix) UTM  generates x

The crossover from single file to Fickian di↵usion

Jimaan Sané,1, 2 Johan T. Padding,3 and Ard A. Louis1

1Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
2Department of Chemistry, Cambridge University,

Lensfield Road, Cambridge CB2 1EW, United Kingdom
3Computational Biophysics, University of Twente,
PO Box 217, 7500 AE, Enschede, The Netherlands

(Dated: December 13, 2023)

The crossover from single-file di↵usion, where the mean-square displacement scales as hx2i ⇠ t
1
2 ,

to normal Fickian di↵usion, where hx2i ⇠ t, is studied as a function of channel width for colloidal
particles. By comparing BD to a hybrid molecular dynamics and mesoscopic simulation technique,
we can study the e↵ect of hydrodynamic interactions on the single file mobility and on the crossover
to Fickian di↵usion for wider channel widths. For disc-like particles with a steep interparticle
repulsion, the single file mobilities for di↵erent particle densities are well described by the exactly
solvable hard-rod model. This holds both for simulations that include hydrodynamics, as well as for
those that don’t. When the single file constraint is lifted, such that the pipe width L = 2�+ � with
� the colloid diameter, then for small �/� the particles can be viewed as hopping past one-another
in an average time thop. For shorter times t ⌧ thop the particles still exhibit sub-di↵usive behaviour,
but at longer times t � thop, normal Fickian di↵usion sets in with an e↵ective di↵usion constant
Dhop ⇠ p

thop. For the Brownian particles, thop ⇠ ��2 when �/� ⌧ 1, but when hydrodynamic
interactions are included, we find a stronger dependence than ��2. We attribute this di↵erence to
short-range lubrication forces that make it more di�cult for particles to hop past each other in very
narrow channels.

PACS numbers:

I. INTRODUCTION

When particles are confined to channels so narrow that
mutual passage is excluded, the geometric constraints re-
strict the particles to a single file and a fixed spatial se-
quence. For short times the mean-square displacement
may still take the Fickian form hx2

i = 2D0t, with a self-
di↵usion coe�cient D0, but at longer times the motion is
strongly suppressed by collisions with neighbouring par-
ticles, leading to an asymptotic scaling of the form:

hx2
i = 2Ft1/2 (1)

first derived by Harris [1] in a more mathematical con-
text, and independently by Levitt [2] for particles di↵us-
ing in a narrow pore. Here F is the single file di↵usion
(SFD) mobility.

PU (x) =
X

p:U(p)=x

✓
1

2

◆l(p)

= 2�K(x) + . . . (2)

There has been an increasing interest in transport
through highly confined pores [3], stimulated in part
by biological realisations such as ion channels [4], and
aquaporins [5]. Water under extreme nanoscale confine-
ment exhibits behaviour that di↵ers markedly from the
bulk [6]. Single file flow of water is also important in ar-
tificial materials like carbon nanotubes [7, 8]. Transport
of simple molecules through porous materials such as ze-
olites also show single file sub-di↵usive behaviour [9–11].

Although the biological and synthetic nanoscale sys-
tems described above show signatures of SFD, their in-

terpretation is complicated by numerous other factors
such as the interaction of the particles with the walls
of the confining pore. By contrast well defined model
systems can be created with micron sized colloidal par-
ticles. One of the major advantages is that the particles
can be directly imaged in real time with digital video mi-
croscopy. By using lithography [12–14] or optical tweez-
ers [15] to create the one-dimensional confinement for
colloidal particles, unambiguous evidence of asymptotic
SFD hx2

i ⇠ t
1
2 scaling was observed. Lin et al. [14] mea-

sured the SFD mobility F for di↵erent one-dimensional
packing fractions ⌘ = ⇢�, where the density ⇢ = N/Lp,
the number of particles is N , the length of the pipe is Lp,
and � is the colloidal hard-sphere radius. They found
good agreement between their measured F and the SFD
mobility for a hard-rod fluid (also known as a Tonks
gas) [2]:

FHR = lc

r
Do

⇡
=

�(1� ⌘)

⌘

r
Do

⇡
= Do

r
2tc
⇡

(3)

where lc is defined as the average inter-particle separation
and tc = l2

c
/2D0 is the average time between collisions.

On time scales t much less than the collision time tc,
one expects ordinary Fickian di↵usion, whereas for time
scales t � tc one expects to observe the asymptotic SFD
di↵usion of eq. (1).
An obvious questions raised by the experiments on

SFD is what happens as the confinement becomes less
severe. At some point the system should cross over to
ordinary Fickian di↵usion at long time-scales. This prob-
lem was first studied by coupling two lattice gas models22

https://www.youtube.com/watch?v=DfY-DRsE86s&feature=youtu.be&t=1h30m02s
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L. A. Levin. Laws of information conservation (non-growth) and aspects of the foundation of probability theory. Problems of Information Transmission, 10:206, (1974) 

A priori probability estimates from structural descriptional? complexity

Kamaludin Dingle1 and Ard A. Louis1

1
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

(Dated: September 7, 2016)

Many real world systems can be described using finite discrete input-output maps.
If an input is selected at random, what is the probability P (x) that a given map
generates a particular output x? Without knowing details of the map it may seem
hard to do better than a uniform a priori probability for generating any possible
output. Here, by extending fundamental results from algorithmic information theory,
we show instead that for many real world maps, the a priori probability decays
exponentially with the descriptional complexity K(x) of output x, with an upper
bound P (x) . 2�aK(x)�b which is tight for most inputs. The constants a and b and
many other properties, such as the number of outputs, or whether P (x) > P (y) or vice
versa for two di↵erent outputs x and y, can be predicted with only minimal knowledge
of the mapping. We demonstrate the generality of these principles for applications
ranging from the folding of RNA secondary structures to the Black-Scholes equation
from financial mathematics.

Discrete input-output maps are widely used in science and engi-
neering. Many systems are intrinsically discrete, such as mod-
els of the mapping from genotypes to phenotypes in biology, or
networks of Boolean logic functions in computer science. But
discrete maps can also arise by coarse-graining continuous sys-
tems. Examples include di↵erential equations, where the inputs
are discretised values of the equation parameters, and the out-
puts are discretised values of the solutions for a given set of
boundary conditions. Such a wide diversity of possible maps
might at first sight suggest that, without known details of a
particular map, there are no grounds for predicting one output
to be more likely than another. Thus the a priori expectation
for the probability of obtaining a certain output upon random
sampling of inputs would be given by a uniform distribution.

On the other hand, this problem has been studied, albeit in
in a very abstract way, in a field called algorithmic informa-
tion theory (AIT), founded by Solomono↵1, Kolmogorov2 and
Chaitin3,4. Their fundamental insight was to describe the infor-
mation content or descriptional complexity of a discrete object
such as a binary string x in terms of the length of the shortest
program that generates x on universal Turing machine (UTM).
This measure is called the Kolmogorov-Chaitin complexity or
simply Kolmogorov complexity K(x) of x.

One of the many beautiful properties of K(x) is that it is
asymptotically independent of the UTM that is used. More
precisely if we define KU (x) as the the length of the shortest
program that generates x on UTM U , and define KV (x) in an
analogous way for UTM V , then |KU (x)�KV (x)| < M , where
M is a constant independent of x. Very loosely speaking, M
is the length of a program (compiler) that one UTM can use
to simulate the other. This invariance theorem can also be ex-
pressed as KU (x) = KV (x) + O(1). In the asymptotic limit
of large complexities these di↵erences can be neglected (i.e. the
O(1) terms, which are independent of x, can be ignored) and the
subscript U or V is dropped so that we speak simply of K(x)
which is a property of x only. In this way AIT di↵ers funda-
mentally from Shannon information theory because the latter is
fundamentally a statistical theory about distributions, whereas
the former is a theory about the information content of indi-
vidual objects. We provide a longer description of AIT, with
some further technical definitions, in Supplementary Informa-

tion ??. More complete descriptions can be found in standard
textbooks5,6.
Coding theorem connects probability and complexity
Interestingly, the earliest formulation of AIT (by Solomono↵1)
was in terms of the probability P (x) that a UTM generates an
output x upon random input programs. If one assumes that the
probability of generating a binary input program of length l is
simply 2�l (which is true for prefix codes, see Supplementary
Information ??) then the most likely way to obtain output x by
random sampling of inputs is with the shortest program that
generates it, a string of length K(x). Since there may also be
longer input programs that generate x, this provides a lower
bound 2�K(x)

 P (x). Later, Levin’s coding theorem7 also set
an upper bound, and so established a more general connection
between the probability P (x) and the (prefix) Kolmogorov com-
plexity K(x) of the output:

2�K(x)
 P (x)  2�K(x)+O(1) (1)

This fundamental result means that ‘simple’ outputs, with
smaller K(x), have an exponentially higher probability of be-
ing generated by random input programmes for a UTM than
complex outputs with larger K(x) do.

Unfortunately, the direct application of these results from
AIT to many practical systems in science or engineering suf-
fers from a number of well known problems. Firstly, due to
the halting problem8, K(x) is formally incomputable, meaning
that in general there cannot exist any method that takes x and
computes K(x)6. Secondly, many key AIT results, such as the
invariance theorem or the coding theorem, only hold up to O(1)
or logarithmic terms which are unknown, and therefore can only
be proven to be negligible in the asymptotic limit of large K(x)
values. Thirdly, many of the input-output maps from science or
engineering are computable, that is they are not UTMs. Thus
while the results of AIT are extremely general and elegant, it is
not obvious how well they translate to many real world systems.

On the other hand, the intuition behind the coding theorem
– complex outputs are harder to generate by random sampling
of inputs than simpler ones are – seems very general. Moreover,
the prediction is very strong: an exponential decrease in prob-
ability upon a linear increase in complexity. Intuitively, such a
strong relationship might be expected to have influence even in

Serious problems for applying coding theorem

1) Many systems of interest are not Universal Turing Machines
2) Kolmogorov complexity K(x) is formally incomputable
3) Only holds in in the asymptotic limit of large x…

We should teach this much more widely!

Intuitively: simpler (small K(x)) outputs are much more likely to appear

Formalising the Monkey Intuition using AIT:  Levin’s Coding Theorem 
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Chomsky hierarchy

Noam Chomsky (1956). "Three models for the description of language" (PDF). IRE 
Transactions on Information Theory. 2 (3): 113–124. 

UTM

Markov chains
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https://chomsky.info/wp-content/uploads/195609-.pdf
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Figure 1: Formal language classes and their correspondence with neural network architectures.
Left: Our empirical evaluation locates the architectures on the hierarchy of formal language classes.
Right: Each formal language class is associated with a minimal computational model (automaton) to
recognize or generate the language (see Section 3). All automata have a finite-state controller at their
core, in addition to increasingly restrictive memory access as we descend the hierarchy.

practically render the model non-universal. Therefore, both architectural and training limitations
impact which sequence prediction problems a model can solve in practice. In formal language theory,
the Chomsky hierarchy (Chomsky, 1956) classifies such (sequence prediction) problems by increasing
complexity. This hierarchy is associated with an equivalent hierarchy of models (automata) that can
solve different problem classes (Savage, 1998; Sipser, 1997). Lower-level automata have restrictive
memory models and can only solve lower-level problems, while Turing machines with infinite
memory and unrestricted memory access lie on top of the hierachy and can solve all computable
problems. However, unlike for classical automata, a unified placement of neural architectures on the
Chomsky hierarchy has not yet been practically established, which is precisely the goal of our work.

This work We conduct an extensive empirical study with the aim of discovering how neural
network models used for program induction relate to the idealized computational models defined
by the Chomsky hierarchy in practice (see Fig. 1 for a summary of our findings). We investigate
whether the theoretical limitations of certain neural models hold in practice when trained with
gradient-based methods. For example, previous work has theoretically argued that RNNs are Turing
complete (Siegelmann & Sontag, 1994). However, more recent theoretical analyses (Ackerman &
Cybenko, 2020; Merrill, 2019; Weiss et al., 2018) showed that RNNs lie much lower on the Chomsky
hierarchy. To complement these theoretical analyses, we conduct a large-scale empirical evaluation
on sequence prediction problems. We make the following main contributions:

• We conduct an extensive generalization study (20 910 models, 15 tasks) of state-of-the-art
neural network architectures (RNN, LSTM, Transformer) and memory-augmented networks
(Stack-RNN, Tape-RNN) on a battery of sequence-prediction tasks spanning the entire
Chomsky hierarchy that can be practically tested with finite-time computation.

• We open-source a length generalization benchmark (https://github.com/deepmind/
neural_networks_chomsky_hierarchy) that is out of reach for state-of-the-art se-
quence prediction models and allows us to pinpoint the failure modes of these architectures.

• We show how increasing amounts of training data do not enable generalization on our tasks
higher up in the hierarchy for some architectures (under sufficient capacity to perfectly learn
the training data) potentially implying hard limitations for scaling laws (Kaplan et al., 2020).

• We demonstrate how augmenting architectures with differentiable structured memory (e.g.,
with a stack or a tape) can enable them to solve tasks higher up the hierarchy.

2 RELATED WORK

Learning formal languages A long line of work has empirically investigated whether common
machine learning architectures, including RNNs (Elman, 1990), GRUs (Cho et al., 2014), SCNs (Giles
et al., 1992; Pollack, 1991), LSTMs (Hochreiter & Schmidhuber, 1997), and Transformers (Vaswani
et al., 2017), are capable of learning formal languages. The main insights are: These networks can

2

G Delétang et al, Neural networks and the chomsky hierarchy, arXiv:2207.02098
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assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

NOTE: upper bound only!
1) Computable input-output map f: I à O
2) Map f  must be simple – e.g. K(f) grows slowly with system size – then 

  K(x|f,n) ≈ K(x) + O(1) 
3) K(x) is approximated, for example by Lempel Ziv compression or some other suitable measure.
4) Bound is tight for most inputs, but not most outputs.
5) Maps must be a) simple, b) redundant, c) non-linear, d) well-behaved (e.g. not a pseudorandom 

number generator) – many maps satisfy these conditions.
6) There is also a statistical lower bound.

K. Dingle, C. Camargo and A.AL,  Nature Comm  9, 761 (2018); K. Dingle, G. Valle-Perez, AAL, Sci. Rep. 10, 4415 (2020)

Kamal Dingle Chico Camargo

(2 Dphils of work)

Simplicity bias for computable (non-UTM) input-output maps

26
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assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)

95

= black line (red dashed with b=0)
Simplicity bias holds for many different maps
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By Kate Golembiewski
March 24, 2022

I.G. Johnston, K. Dingle et al., Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution,  PNAS 
119, e2113883119 (2022)

Evolution also has an inbuilt Occam’s razor.  this helps explain why protein complexes are so symmetric
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Can we break simplicity bias? 

William of Ockham
1287-1347
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Henry ReesDNNs can exhibit an order-to-chaos transition 

Deep Information Propogation, S. S. Schoenholz et al. arXiv:1611.01232 

TP09: The Physics of Machine Learning

parameters for which the C-map has a stable fixed point
at cab < 1 and an unstable fixed point at cab = 1.
Thus, by determining the stability of the fixed point at
cab = 1, for a given set of initialisation parameters, the
type of phases regime can be determined. The stability
of this point is classified by computing �1, which is the
derivative of the correlation coefficient clab with respect
to c

l�1
ab evaluated at cab = 1:

�1 ⌘
@c

l
ab

@c
l�1
ab

����
c=1

= �
2
w

Z
Dz

h
�

0
⇣p

q⇤z
⌘i2

. (11)

where q
⇤ = liml!1 q

l
aa. Using these equations and code

developed by Schoenholz et al. (2019)1, we reproduced
plots of the phase planes for tanh and ReLU.

(a) Tanh (b) ReLU

Figure 3: Mean field phase diagrams for tanh and ReLU
activation functions showing various phase regimes as
a function of �w and �b.

Figure 3a shows, for the tanh activation function, that
parameter space is separated into two regions - an or-
dered regime, where pairs of inputs become increasingly
correlated as they propagate, tending to a correlation of
cab = 1 and a chaotic regime, where pairs of inputs
tend to a correlation cab < 1. The boundary between
the two regimes is defined by �1 = 1 where inputs are
asymptotically correlated. See Appendix A for a full
discussion of the ReLU phase diagram.

Our first contribution is to consider the effect of ad-
justing the network depth on the correlation of inputs
for various initialisation parameters, in an effort to
consider whether network depth influences the ordered
and chaotic regimes. To achieve this, for a given number
of layers d, Equation (10) was iterated d times and then
the final correlation value of the two inputs was plotted
against the initialisation parameters, �w and network
depth d. Since we are iterating the C-map a finite
number of times, the ordered and chaotic regimes, as
defined above, are no longer explicitly defined. Instead

1https://github.com/ganguli-lab/deepchaos

the equations exhibit a form of transient chaos. We still
observe, however, a reasonably sharp drop from high
to low output correlation around the boundary between
order and chaos from Figure 3a. Figure 4 shows that
generally the correlation of sets of inputs decreases both
as �w is increased and as the depth of the network d is
increased. However, importantly, for networks initialised
with the parameters in the ordered regime, we observe
that increasing the depth of the network has no effect
on the correlation. Figure 4 provides us with a clearer
understanding of the various regions of parameter space
and a framework with which to explore the effect of
initialisation parameters �w and d on bias within DNNs.

Figure 4: Output correlation of the C-map for the tanh
activation function for different parameter initialisation.
The initial correlation value was fixed at cab;0 = 0.6.

2 Simplicity Bias in a model DNN
To assess the relationship between the correlation C-
map and implicit bias within DNNs, a untrained feed-
forward network is considered. We attempt to observe,
for a given set of input parameters, �w, �b and depth d,
(which determine the region of parameter space we are
observing), the probability distribution over all possible
functions induced via the parameter-function map M.
Following on from the work of Mingard et al. (2019) and
Pérez et al. (2019), a discrete function space is chosen
for which the inputs, X , are Boolean strings of length
7, X = {0, 1}7, and the outputs are single Boolean
characters {0, 1}. The space of all functions is therefore
F ✓ {0, 1}27 . This function space was selected since the
functions can be easily expressed and the space is small
enough that direct sampling can find the same function
multiple times. There are nevertheless 2128 ⇡ 1038

possible functions. To model functions of this nature,
a DNN was designed with an input layer of width 7 to
match the input space, Nl hidden layers of 40 neurons
each and a single Boolean output. Although this is a
fairly simple function space, when compared to common
image classification problems such as MNIST, it gives us
the freedom to allocate specific target functions to train

Page: 4

Chaotic regime for some activation functions (not ReLU) – for wider initial parameters

30



3/21/25

16

Henry Rees

More biased

Less biased
No Occam

Chaotic regime reduces bias (strength of Occam’s razor) in prior P(f) 

Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. arXiv preprint arXiv:1907.10599, 2019. 

FCN on Boolean system
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Chaotic regime changes the bias in prior P(f) 
2

(a) Prior P (f) versus rank. (b) Prior P (f) versus complexity (c) Generalisation error vs complexity

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

(g) Prior P (K) for uniform sampling (h) Prior P (K) for �w = 1 (i) Prior P (K) for �w = 8

FIG. 1: Priors over functions and over complexity (a) Prior P (f) for FCNs on n = 7 Boolean functions, ranked by
probability of individual functions, generated from 108 random samples of parameters ⇥ over a Gaussian Ppar(✓) with eight
standard deviation �w. For the tanh activation functions, the prior changes with increasing �w (b) Prior probability of a
function P (f) versus Lempel-Ziv complexity for the networks from (a). (c) Generalisation error versus Lempel-Ziv complexity of
the target function for two networks from (b) training to zero error on a training set S of size m = 64, with the error calculated
on the remaining |T | = 64 functions. The networks were trained with advSGD [12] on cross-entropy loss for 1000 random
initialisations. Error bars are one standard deviation. (d), (e), (f) Generalisation error versus learned function LZ complexity
scatterplots, for 1000 random initialisations for three target functions from subfigure (c). The dashed vertical line denotes the
target function complexity. The black cross represents the most common learned function. The histograms on top of the plots
show the posterior probability upon training as a function of complexity: PSGD(K|S) while the histograms on the side show the
posterior probability PSGD(✏|S) that a specific generalisation error ✏ is found. (g) shows the prior probability P (K) to obtain a
function of complexity K for uniform random sampling of 108 functions, while (h) and (i) show P (K) for the �w = 1 and
�w = 8 networks respectively. The large difference in these priors helps explain the large variation in DNN performance.

it solves the overparameterisation/large capacity prob-
lem), can we understand how to improve its performance
further? This second order question is what practition-
ers of deep learning typically care about. Differences in
architecture, hyperparameter tuning, data augmentation
etc. . . can indeed lead to important improvements in DNN
performance. Exactly why these tweaks and tricks gen-
erate better inductive bias is often not well understood
either, and is an important subject of investigation. Be-

cause the two questions are often conflated, leading to
confusion, we want to emphasise up front this paper will
focus on the basic first order overfitting conundrum shared
by all overparameterised DNNs. Understanding the basic
reasons for why DNNs don’t routinely overfit may provide
insight into (important) second order questions of how to
improve their performance further.
Learning Boolean functions: a model system

Inspired by a recent call to study model systems by Zde-

Do deep neural networks have an inbuilt Occam's razor? Chris Mingard, Henry Rees, Guillermo Valle-Pérez, AAL  Nat Comm 16, 220 (2025) 
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Priors over complexity P(K)

2
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FIG. 1: Priors over functions and over complexity (a) Prior P (f) for FCNs on n = 7 Boolean functions, ranked by
probability of individual functions, generated from 108 random samples of parameters ⇥ over a Gaussian Ppar(✓) with eight
standard deviation �w. For the tanh activation functions, the prior changes with increasing �w (b) Prior probability of a
function P (f) versus Lempel-Ziv complexity for the networks from (a). (c) Generalisation error versus Lempel-Ziv complexity of
the target function for two networks from (b) training to zero error on a training set S of size m = 64, with the error calculated
on the remaining |T | = 64 functions. The networks were trained with advSGD [12] on cross-entropy loss for 1000 random
initialisations. Error bars are one standard deviation. (d), (e), (f) Generalisation error versus learned function LZ complexity
scatterplots, for 1000 random initialisations for three target functions from subfigure (c). The dashed vertical line denotes the
target function complexity. The black cross represents the most common learned function. The histograms on top of the plots
show the posterior probability upon training as a function of complexity: PSGD(K|S) while the histograms on the side show the
posterior probability PSGD(✏|S) that a specific generalisation error ✏ is found. (g) shows the prior probability P (K) to obtain a
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1) Do we need a new statistical learning theory 
based on inductive bias? 

2) What other natural inductive biases aid 
generalisation in DNNs?

3) What does DNN inductive bias tell us about 
data on which they generalise well? 

Questions about inductive bias towards simplicity

35

So far we looked at question 1: why do DNNs 
generalise at all?

Can we look at question 2: Given a DNN, can me 
make it work better?

Questions about inductive bias towards simplicity
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Feature learning

R. A. Fisher  "The use of multiple measurements in taxonomic problems". Annals of Eugenics. 7: 179  (1934)

R.A. Fisher, 1890-1962
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Moan: Quantum neural network literature and quantum advantage

16

(a) Classical FCN from Abbas et al. [13].

(b) Our perceptron architecture. (c) Data

FIG. 7: Misleading claims of quantum advantage in Abbas et al. [13]. (a) shows a schematic of the FCN
architecture used in [13] with layer sizes [4, 1, 1, 1, 2]; it is called the classical neural network in [13]. (b) Our
perceptron (layer sizes [4, 2]). Each architecture has 8 parameters. (c) Equivalent data to Fig 3b from Abbas et al.
[13] shows that their 8-parameter QNN (called quantum neural network) outperforms their classical neural network
(from (a)). However, rather than showing quantum advantage, their FCN’s poor performance is caused by the use of
single node bottlenecks. We added an 8-parameter perceptron (see (b)) that achieves close to 0 loss, significantly
lower than the QNN. The fact that the perceptron can fully classify this data is not surprising given that the
simplified Iris data-set [65] they use is almost trivially linearly separable (see Fig 8.), while the full dataset is not.
Note that we have changed our y-axis to start at 0.0 instead of 0.2 as done in [13].

and reality. Moreover, the perplexing fact that it continues to be so popular helps illustrate the importance of fixing
some of the broader cultural issues critiqued in Bowles et al. [17], and in this Appendix.

Finally, we note that even when papers in the subfield of QNNs are technically correct, there is a tendency to employ
overly enthusiastic rhetoric regarding potential quantum advantage which can obscure the clarity of key results. While
the prospect of merging quantum computing with artificial intelligence is undoubtedly thrilling, a shift back to the
more measured and occasionally mundane practices of traditional scientific research may in some cases be needed.

C. Mingard et al. Exploiting the equivalence between quantum neural networks and perceptrons arXiv:2407.04371 
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DNN as a feature map + linear final layer of width p

1. Introduction

(a) Abstraction of DNN architecture (b) Performance by final layer width

Figure 1: A DNN decomposed into a feature map and a linear last layer (a) An abstract diagram
depicting a DNN architecture as a combination of the forward feature-map � : � ! Rp from the dataspace
� to the p inputs of the final layer, and final linear classifier which here can output one of C classes. Most
DNNs have this abstract structure. They mainly vary in how they create their feature maps. Within this
picture, we define feature learning as any change to the feature map upon training, reflected in changes to
the p ‘features’ compared to initialization. An important aspect of modern DNN practice is that the final
layer is typically small (p ⇡ 102 � 103) compared to the training set size n so that zero training error can’t
be reached without forcing feature learning. (b) Training (blue) and test error (orange) for a 5-layer CNN
on the standard full MNIST dataset as a function of the width p of the final linear layer for the case of a
fixed feature map (solid lines) and for full SGD with backpropagation on all layers (dashed lines). For this
simple example, one still needs a final layer of at least p = 1, 000 to achieve zero training error with a fixed
feature map, whereas if full feature learning is allowed, a width of just p = 20 is sufficient. For more complex
datasets, much wider final widths, closer in size to n, would be needed for a fixed (random) feature map to
achieve zero training error.

The ability of deep neural networks (DNNs) to automatically feature learn is considered to play a key role
in their success [Allen-Zhu and Li, 2019; Daniely and Malach, 2020; Yang and Hu, 2020; Refinetti et al., 2021;
Malach et al., 2021]. Even though more recent work investigating the linearized infinite width limits of DNNs,
where DNNs reduce to a Gaussian process (NNGP) [Neal, 1994; Lee et al., 2018; Matthews et al., 2018] or a
Neural Tangent Kernel (NTK) [Jacot et al., 2018] has demonstrated impressive performance on certain model
tasks [Lee et al., 2020; Arora et al., 2019], many widely used architectures successful in various tasks [Bengio
et al., 2013; LeCun et al., 2015; Schmidhuber, 2015; Simonyan and Zisserman, 2014; Goodfellow et al., 2014;
He et al., 2016; Devlin et al., 2018] fall within the feature learning regime. This highlights the necessity for a
more comprehensive understanding of feature learning, particularly through a more intuitive approach.

While it is widely accepted that feature learning is the change of features under training, there are
many different proposals in the literature for how to measure and quantify this phenomenon. More visually
intriguing studies include direct visualization of hidden layer representations [Zeiler and Fergus, 2014; Girshick
et al., 2014; Molnar, 2020] and the measuring the change of filter of CNN [Beaglehole et al., 2023]. While
more theoretical approach defines feature learning as deviation from the linearized DNN (i.e. limit of fixed
kernel), including NTK [Chizat et al., 2019; Dyer and Gur-Ari, 2019; Geiger et al., 2020; Atanasov et al.,
2021; Bordelon and Pehlevan, 2022] and the forward feature kernel (NNGP) [Yang and Hu, 2020; Yaida, 2020;
Naveh and Ringel, 2021; Canatar and Pehlevan, 2022].

In this paper, we aim to provide an intuitive visualization of feature learning while also conveying the
notion that feature learning involves deviation from a simple linear model. We adhere to the feature learning
approach that pioneered deep learning [LeCun et al., 2015; Schmidhuber, 2015]: DNNs with a number of
layer-wise modules automatically learn representations of the raw data that can easily be separated with
a relatively small final linear layer. In Figure 1(a) we schematically depict this basic architecture, which
is shared by most DNNs. DNNs mainly differ in the way that they structure their forward feature maps
� : � ! Rp, which create a non-linear transformation from the data space � into a representation Rp with
p, the width of the last layer. These are then, in turn, the inputs (or features) for the final linear layer.
The modules that create the feature map � can have many different forms. Examples include a series of
fully connected layers, as in an FCN, a mixture of convolutional and pooling layers, as in VGG [Simonyan
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and Zisserman, 2014] or other CNNs, a combination of convolutional layers and skip connections, as in a
ResNet [He et al., 2016], or an encoder-decoder architecture, as in transformers [Vaswani et al., 2017], and
many more. Within this simple schema, feature learning can be defined as any changes in feature map � due
to the training of intermediate layers.

Note that it is also possible to fix the feature map – typically this is done by randomly selecting its
parameters – and to only learn the final layer weights. Then DNN reduces to the following linear model
where ✓ is the last layer parameter:1

f(x) =
pX

k=1

✓k�k(x). x ⇠ q, � : � ! Rp (1)

where q is the true distribution of the data, p is the number of parameters of the linear model, and �k(x) is
the kth entry of the feature vector. To achieve a low training loss or zero training accuracy for a fixed-feature
map, the model either must be overparameterized n � p or have features that are suitable for describing
the data. Since practical DNNs have a much narrower last layer compared to the number of datapoints(i.e.
p 2 [102, 103], n > 104) the latter condition must be satisfied for small training loss. However, as seen in
Figure 1(b), a CNN with fixed random convolutional layers needs a width of at least p = 1000, which is larger
than the number of raw features of 784, to obtain zero training error on a simple MNIST dataset. For more
complex datasets like CIFAR10, we observe a worse scenario where p ⇡ n in order to achieve zero training
accuracy on a randomly initialized CNN. In contrast, DNN which can update all layers achieves zero training
error (and small test error) with a width of only p = 20. The ability to learn a feature map that allows fitting
of the training data with narrow (p ⌧ n) final linear layer, or equivalently finding ‘useful’ features for fitting
the data is crucial for modern DNN architectures.

Feature learning in this context is the evolution of the feature map, which strictly speaking is equivalent
to the change of feature kernel �(x)T�(x0) as defined in Yang and Hu [2020]. However, we aim to not only
quantify that the feature kernel changes, but also provide visualization and intuition of ‘how’ the features
are changing. To achieve our goal, we visualize feature learning in more detail by observing the evolution
of the feature kernel’s eigenfunctions, which we call features.2 To be specific, we observe feature learning
via visualizing features’ quality in describing the target function, utilization within the learned function,
and their effective number via the eigenvalues. This visualization provides better intuition on the features
becoming ‘more useful for linear separation’. See the next section for their definitions.

Through our visualization method, we observe that DNNs tend to find a fewer number of features that
are useful in describing the data. We find that ResNet18 and VGG16 tend to use only the minimum number
of features to describe the data, which we name the minimum feature regime (MFR). In Section 7, we show
the connection between MFR and neural collapse (NC) [Papyan et al., 2020; Han et al., 2021], which is a
state in which features of the training set collapse to a symmetric and minimal representation. We show how
our formalism leads to NC, providing the kernel perspective of NC, and also discuss the difference between
MFR and NC.

To explain DNN’s tendency toward MFR, we propose and empirically test the Matthew effect in Section 4.
This effect suggests a tendency for (S)GD to make high eigenvalue features become more useful (in our
measure) at a faster rate. The Matthew effect agrees with prior studies that DNNs find learn minimal
representations [Jacot et al., 2022; Galanti et al., 2022; Mousavi-Hosseini et al., 2022]. In addition, we prove
the Matthew effect in a simple setup of unconstrained feature model [Mixon et al., 2020] in Section 8.

Finally, we extend our definition of features to intermediate layers in Section 6. we show how these
features differ from layer to layer, confirming the intuition that each successive layer provides fewer but more
useful features that make a linear representation of the final target function easier [Montavon et al., 2011;
Alain and Bengio, 2016]. In addition, we hypothesize that the conversion from many-but-poorer features into
few-but-better features must occur in a gradual manner, and explore scenarios when it deviates from gradual
conversion.

1.1 Our contributions

we will rewrite this section at the end

1. Demonstration of the visualization method along the pedagogical introduction of features and feature
learning to suggest an intuitive framework for understanding feature learning.

1. We have assumed a scalar output DNN for simplicity of the argument.
2. To be more specific, the eigenfunctions diagonalize integral operator T [f ] =

R
� �(x)T�(x0)q(x)dx and not the kernel itself.

4

Outputs of the penultimate layer are the inputs (features) of the final layer 

Yoonsoo NamY. Nam et al, Visualising Feature Learning in Deep Neural Networks by Diagonalizing the Forward Feature Map arXiv:2410.04264 
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The modules that create the feature map � can have many different forms. Examples include a series of
fully connected layers, as in an FCN, a mixture of convolutional and pooling layers, as in VGG [Simonyan
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and Zisserman, 2014] or other CNNs, a combination of convolutional layers and skip connections, as in a
ResNet [He et al., 2016], or an encoder-decoder architecture, as in transformers [Vaswani et al., 2017], and
many more. Within this simple schema, feature learning can be defined as any changes in feature map � due
to the training of intermediate layers.

Note that it is also possible to fix the feature map – typically this is done by randomly selecting its
parameters – and to only learn the final layer weights. Then DNN reduces to the following linear model
where ✓ is the last layer parameter:1

f(x) =
pX

k=1

✓k�k(x). x ⇠ q, � : � ! Rp (1)

where q is the true distribution of the data, p is the number of parameters of the linear model, and �k(x) is
the kth entry of the feature vector. To achieve a low training loss or zero training accuracy for a fixed-feature
map, the model either must be overparameterized n � p or have features that are suitable for describing
the data. Since practical DNNs have a much narrower last layer compared to the number of datapoints(i.e.
p 2 [102, 103], n > 104) the latter condition must be satisfied for small training loss. However, as seen in
Figure 1(b), a CNN with fixed random convolutional layers needs a width of at least p = 1000, which is larger
than the number of raw features of 784, to obtain zero training error on a simple MNIST dataset. For more
complex datasets like CIFAR10, we observe a worse scenario where p ⇡ n in order to achieve zero training
accuracy on a randomly initialized CNN. In contrast, DNN which can update all layers achieves zero training
error (and small test error) with a width of only p = 20. The ability to learn a feature map that allows fitting
of the training data with narrow (p ⌧ n) final linear layer, or equivalently finding ‘useful’ features for fitting
the data is crucial for modern DNN architectures.

Feature learning in this context is the evolution of the feature map, which strictly speaking is equivalent
to the change of feature kernel �(x)T�(x0) as defined in Yang and Hu [2020]. However, we aim to not only
quantify that the feature kernel changes, but also provide visualization and intuition of ‘how’ the features
are changing. To achieve our goal, we visualize feature learning in more detail by observing the evolution
of the feature kernel’s eigenfunctions, which we call features.2 To be specific, we observe feature learning
via visualizing features’ quality in describing the target function, utilization within the learned function,
and their effective number via the eigenvalues. This visualization provides better intuition on the features
becoming ‘more useful for linear separation’. See the next section for their definitions.

Through our visualization method, we observe that DNNs tend to find a fewer number of features that
are useful in describing the data. We find that ResNet18 and VGG16 tend to use only the minimum number
of features to describe the data, which we name the minimum feature regime (MFR). In Section 7, we show
the connection between MFR and neural collapse (NC) [Papyan et al., 2020; Han et al., 2021], which is a
state in which features of the training set collapse to a symmetric and minimal representation. We show how
our formalism leads to NC, providing the kernel perspective of NC, and also discuss the difference between
MFR and NC.

To explain DNN’s tendency toward MFR, we propose and empirically test the Matthew effect in Section 4.
This effect suggests a tendency for (S)GD to make high eigenvalue features become more useful (in our
measure) at a faster rate. The Matthew effect agrees with prior studies that DNNs find learn minimal
representations [Jacot et al., 2022; Galanti et al., 2022; Mousavi-Hosseini et al., 2022]. In addition, we prove
the Matthew effect in a simple setup of unconstrained feature model [Mixon et al., 2020] in Section 8.

Finally, we extend our definition of features to intermediate layers in Section 6. we show how these
features differ from layer to layer, confirming the intuition that each successive layer provides fewer but more
useful features that make a linear representation of the final target function easier [Montavon et al., 2011;
Alain and Bengio, 2016]. In addition, we hypothesize that the conversion from many-but-poorer features into
few-but-better features must occur in a gradual manner, and explore scenarios when it deviates from gradual
conversion.

1.1 Our contributions

we will rewrite this section at the end

1. Demonstration of the visualization method along the pedagogical introduction of features and feature
learning to suggest an intuitive framework for understanding feature learning.

1. We have assumed a scalar output DNN for simplicity of the argument.
2. To be more specific, the eigenfunctions diagonalize integral operator T [f ] =

R
� �(x)T�(x0)q(x)dx and not the kernel itself.
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Figure 2: Toy model demonstrating feature learning by a DNN A 3-layer FCN with width 100,
having scalar input and output, is trained to learn the Heaviside step function f⇤ over the domain [�1, 1].
(a) At initialization (epoch 0), the first three eigenfunctions/features ei (dashed) of the feature-map �(x)
are shown in order of their eigenvalues. Many more needed to represent the target function f⇤ (solid grey),
but for a linear model that does not change the feature map, high accuracy can be achieved using these
first 100 eigenfunctions. (b,c) Under training, the DNN employs a different strategy and instead learns new
eigenfunctions (features) with better alignment, greatly reducing the number needed to describe the target
function f⇤ and the learned function f̂ . To visualize how feature learning develops with epochs under training,
the (d) target function f⇤ and (e) the learned (self) function f̂ are projected onto the first k eigenfunctions
using (Equation (8)), illustrating that fewer features are needed after training. (f) The eigenvalues ⇢i decay
significantly faster post-training.

Figure 3: Comparing feature learning to coefficient learning for a wide CNN on MNIST:
A CNN of width p = 1024 can be trained to 100% training accuracy on the n = 50, 000 images of the training
set of MNIST in two different ways. If the hidden layers are fixed at initialization, and only the last linear
layer is trained, then all 1024 initial eigenfunctions (features) are needed, as depicted by the blue line, to (a)
express the target function and (b) express the learned function. In addition, (c) the eigenvalue spectrum
follows a power-law except for the first eigenvalue. By contrast, for vanilla SGD (orange lines in (a-c)), only
10 eigenfunctions (features) are needed and ⇢k10 is significantly larger compared to other eigenvalues. Even
though both methods achieve good test accuracy (in brackets), the features used are dramatically different
with SGD-trained network using only 10 features while the last-layer-only training uses all 1024 features, (see
also the CKA measure in square brackets). For more direct evidence that feature learning allows training
with a narrower last layer, see Appendix G where the performances of VGG16 and ResNet18 on CIFAR10
and CIFAR100 remain unaffected even when the width of the last layer approaches the number of classes.
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Projections on the target function and learned function

a non-linear DNN can change its feature-map by parameter updates in the intermediate layers, making �(x),
and therefore also its eigenfunctions and eigenvalues, defined through Equation (3), time-dependent. From
this picture, we define features in this paper as follows:

Definition 1 (Features) For the true data distribution q and a forward feature map � : � ! Rp from data
to the input of the last layer of DNN, we define the p eigenfunctions [e1, e2 . . . ep] of the feature map, found
by diagonalizing the integral operator in Equation (3), as features, and index them in descending order with
respect to their eigenvalues.

This definition can capture differences between non-linear feature learning (where the features change) and
linear coefficient learning (where the features are static). Nevertheless, the eigenfunctions (features) can be
complex and hard to directly visualize for high-dimensional problems. Therefore, we need to define some
simpler quantitative measures to capture feature learning in practice.

2.3 Quality of features and alignment between features and function spaces

We will define two projection measures ⇧⇤(k) and ⇧̂(k), which will be extensively used for our visualization
of feature learning. ⇧⇤(k) visualizes the effective number of features and their quality in expressing the target
function, while ⇧̂(k) visualizes the effective number of features used by DNN. We define the relevant terms
needed to define these measures.

2.3.1 Target function and target function space

In this paper, we mainly treat classification on MSE loss, which means that the target function is a vector
function (i.e. f⇤ : � ! RC). For a balanced C-way classification task, the dataspace � can be partitioned
into subspaces {A1, · · · , AC} by class. The entries of target function f⇤

i : � ! R for i 2 [1, · · · , C] can be
written down as:

f⇤

i (x) = 1Ai(x) (Ai = {x : x is in class i}) (5)

where 1Ai is the indicator function for Ai. Note that because all the classes are mutually exclusive, we have

hf⇤

i |f⇤

j i =
Z

�
f⇤

i (x)f
⇤

j (x)q(x)dx = �ij
1

C
. (6)

where the C�1 on the right-hand side comes from the probability measure for each class i. Then it follows
that at least C orthogonal scalar output functions are needed to express f⇤. We define the function space
spanned by [f⇤

1 , · · · , f⇤

C ] as the target function space H⇤.

2.3.2 Projection measures

With this notation, we can define projection operator PH⇤ : L2(�) ! L2(�) onto the target function space
H⇤ and define the quality of a feature Q⇤

k for ek as follows:

PH⇤ [g] :=
CX

j=1

1

kf⇤

i k2
|f⇤

i i hf⇤

i |gi , Q⇤

k :=
hek|PH⇤ [ek]i

C
=

CX

i=1

hek|f⇤

i i
2 . (7)

The quality of features then measures how much of ek overlaps with C dimensional target function space H⇤,
or equivalently how useful it is at expressing the target function. Note that 0  Q⇤

k  C�1 and we finally
take a cumulative measure of the quality of features, ordered by the size of their eigenvalues as

⇧⇤(k) :=
kX

j=1

Q⇤

k =
kX

j=1

CX

i=1

hej |f⇤

i i
2 , (8)

which captures what fraction of the function f⇤ is captured by the first k eigenfunctions (features). These
are natural measures, versions of which abound across science and engineering. Not surprisingly these have
also been used in the literature surrounding deep learning. Examples include the SVCCA [Raghu et al., 2017]
and cumulative power [Canatar et al., 2021; Canatar and Pehlevan, 2022].

The trajectory of cumulative projection measures over k is often termed alignment highlighting the
correlation between Q⇤

k and ⇢k. The ‘alignment’ is important for describing the property of linear models
both in terms of dynamics and generalization loss. Regarding dynamics, as shown in Equation (4), faster
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Projection onto target function

Definition 1 (Features) For the true data distribution q and a forward feature map � : � ! Rp from
data to the input of the last layer of DNN, p eigenfunctions [e1, e2 . . . ep] of the feature map can be found
by diagonalizing the integral operator T in ??, which are indexed in descending order with respect to their
eigenvalues. Then kth feature is defined as a scalar random variable ek(x) for a random variable x ⇠ q.

Our definition of kth feature is just a linear combination of the entries of the input to the last layer, chosen
such that it depicts the natural direction of the data after the transform via �, similar to how SVD finds the
natural direction of matrix.

This definition offers insights into dynamics by distinguishing between non-linear feature learning (non-
trivial update of intermediate layers) and linear coefficient learning (update of last linear layer). Nevertheless,
the eigenfunctions (features) can be complex and hard to directly visualize for high-dimensional problems.
Therefore, we need to define some simpler quantitative measures to capture feature learning in practice.

2.1.3 C-class target function space

Even though we have assumed that a DNN has a scalar output function for the sake of simplicity, the
definitions generalize naturally to C-way classification tasks. For a balanced C-way classification task, the
target function is now a vector function (i.e. f⇤ : � ! RC), and the dataspace � can be partitioned into
subspaces {A1, · · · , AC} by class. For f⇤ = [f⇤

1 , · · · , f⇤

C ] as illustrated in ??, its entries f⇤

i : � ! R of f⇤ for
i 2 [1, · · · , C] can be written down as:
yoonsoo: is entry correct terminology?

f⇤

i (x) = 1Ai(x) (Ai = {x : x is in class i}) (5)

where 1Ai is the indicator function for Ai. Note that because all the classes are mutually exclusive, we have

hf⇤
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j i =
Z

�
f⇤

i (x)f
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j (x)q(x)dx =
1

C
�ij . (6)

where the C�1 on the right-hand side comes from the probability measure for each class i. Then it follows
that at least C orthogonal scalar output functions are needed to express f⇤. We define the function space
spanned by [f⇤

1 , · · · , f⇤

C ] as the target function space H⇤.

2.2 Quality of features and alignment between features and function spaces

We will define two projection measures ⇧⇤(k) and ⇧̂(k), which will be extensively used for our visualization
of feature learning. ⇧⇤(k) will be used to visualize the cumulative quality of features in expressing the target
function, while ⇧̂(k) visualizes DNN’s cumulative utilization of features. We define the relevant terms needed
to define these measures.

2.2.1 Projection measures

Having defined f⇤, we can define a projection operator PH⇤ : L2(�) ! L2(�) onto the target function space
H⇤ and define the quality Q⇤

k of a feature as follows:

PH⇤ [g] :=
CX

j=1

1

kf⇤

i k2
|f⇤

i i hf⇤

i |gi , Q⇤

k :=
hek|PH⇤ [ek]i

C
=

CX

i=1

hek|f⇤

i i
2 . (7)

Q⇤

k measures how much of the respective ek overlaps with C dimensional target function space H⇤, or
equivalently how useful it is at expressing the target function. Note that 0  Q⇤

k  C�1 and we finally take a
cumulative measure of the quality of features, ordered by the size of their eigenvalues as

⇧⇤(k) :=
kX

j=1

Q⇤

k =
kX

j=1

CX

i=1

hej |f⇤

i i
2 , (8)

which captures what fraction of the function f⇤ is captured by the first k eigenfunctions (and thus features).
These are natural measures, versions of which abound across science and engineering. Not surprisingly these
have also been used in the literature surrounding deep learning. Examples include the SVCCA [?] and
cumulative power [??].

5

The trajectory of cumulative projection measures over k is often termed alignment highlighting the
correlation between Q⇤

k and ⇢k. The ‘alignment’ is important for describing the property of linear models
both in terms of dynamics and generalization loss. Regarding dynamics, as shown in ??, faster growth of
⇧⇤(k) indicates faster training due to faster coefficient learning for higher quality features. For generalization
loss, recent studies [?????] have shown that better alignment leads to better generalization performance in
overparameterized linear models.

Note that the projection measure can also be defined for the current learned function f̂ : � ! RC ,
which is the vector function expressed by DNN. We can analogously define the learned function space
Ĥ = span{f̂1, · · · , f̂C}, projection operator P

Ĥ
onto the learned function space, and finally ‘utility’ Q̂k to

define analogous alignment measure

⇧̂(k) =
kX

j=1

Q̂k, Q̂k =
hek|PĤ

[ek]i2

dim(Ĥ)
, (9)

which quantifies how many features are needed to describe the current learned function.3 Q̂k is called the
utility of kth feature, as it measures the feature’s utilization in expressing the learned function space.4 ⇧̂(k)
will be termed the alignment to the learned function, while alignment without explicit specification refers to
alignment with the target function or ⇧⇤(k). Finally, note that since Q̂k is a measure of the utilization of the
feature, ⇧̂(p) = 1 is always guaranteed.

2.3 Feature learning

Soufiane: Feature Learning is the main point of this paper, if you define it in some way, it should be
clearly stated and defined.

Definition 2 (Feature learning) A DNN undergoes feature learning if its parameters ✓(t) (excluding the
last layer) at given time t are updated by training such that the forward feature map �✓(t) : � ! Rp is different
from the forward feature map �✓(0) at initialization. The two feature maps are different if there exists x 2 �

such that �✓(0)(x) 6= �✓(t)(x).

The definition of feature learning is closely related to the change of feature kernel and similar to that
defined in ?.5 In addition, the definition is similar in spirit to other definitions of feature learning that involve
changes in the kernel during training[??????????].

2.4 Visualization technique and effective dimensions

Although we have a formal definition of feature learning, our primary concern is not whether the DNN feature
learns or not, as practical DNNs must undergo feature learning to achieve a small training loss. Instead, our
focus is on observing and understanding the change in the features. (Soufiane: Unclear what "the state to
which DNN features learn" means) For example, ? includes the ‘easiness’ and ‘usefulness’ of features in the
definition of representation (feature) learning: “ learning representations of the data that make it easier to
extract useful information when building classifiers or other predictors.”. In our study, the final layer serves as
the DNN’s classifier, and ⇧⇤(k), ⇧̂(k), and ⇢k measures the update of features regarding their ’usefulness’ for
the last linear layer.

To be more specific, ⇧⇤(k) describes the usefulness of features in expressing the target function. ⇧̂(k)
gauges the usefulness in expressing the learned function or equivalently the training data. Finally, ⇢k describes
the intensity of features or equivalently the effective number of features. Together, the three measures provide
a comprehensive visualization of the usefulness of features. For example, finding the smallest k that achieves
⇧̂(k) ⇡ 1 represents the effective number of features used by DNN.

Even though visualization via three vector measures ⇧⇤(k), ⇧̂(k), and ⇢k allow fine-grained information
of � and DNN, it is also preferable to have a scalar measure whenever possible. For any vector a of positive

3. Typically, dim(Ĥ) = C, since the entries of f̂ are likely to be linearly independent. Additionally, the entries of the output

function typically exhibit similar norms after training. (i.e. kf̂ik ⇡ kf̂jk)
4. An overlap between ek and Ĥ also sufficiently characterizes the feature’s role in expressing f̂ , given the minimal divergence

between |f̂i| and |f̂j | for any i and j.
5. There are minor differences, for example, feature learning in ? was defined in the infinite width limit, while our definition

does not.
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captured by the first k eigenfunctions or features. Another way of expressing this concept is to say that ⇧⇤(k)
measures how well the first k eigenfunctions are aligned with f⇤. For a DNN with a final layer width p, there
are p features (eigenfunctions). We expect that total alignment or total quality of all the features, ⇧⇤(p), will
typically increase under training. The highest possible total alignment/quality, when the DNN expresses
the true-function f⇤ is ⇧⇤(p) = 1. The minimum number of features for which ⇧⇤(k) = 1 can be attained
is at k = C, which would occur when the quality of Qk of each feature is at its maximum value of 1/C.
Related cumulative measures of alignment/quality in the context of deep learning can be found for example in
[Cristianini et al., 2001; Raghu et al., 2017; Canatar et al., 2021; Canatar and Pehlevan, 2022]. In particular,
recent studies [Canatar et al., 2021; Jacot et al., 2020; Cui et al., 2021; Harzli et al., 2021; Simon et al., 2021]
have linked better alignment at lower k to better generalization performance in overparameterized linear
models. Due to the narrow final layer widths, the learning problem described here is underparameterized,
but the idea that good generalisation correlates with large ⇧⇤(p) should be robust.

Analogous measures to those above for the target function f⇤ can also be defined for the vector function
f̂ : � ! RC expressed by the DNN after training, which we call the ‘learned function’. The learned function
space is given by Ĥ = span{f̂1, · · · , f̂C}. Similarly, a projection operator P

Ĥ
onto the learned function space

can be defined as in Equation (6). This can then be used to define the utility Q̂k of the kth feature which
measures how much the trained DNN uses that feature to express f̂ :

Q̂k =
hek|PĤ

[ek]i2

dim(Ĥ)
. (8)

Similarly, we can define a cumulative measure of the utility of the first k features, ordered by the size of their
eigenvalues:

⇧̂(k) =
kX

j=1

Q̂k (9)

which we will call the cumulative utility. It takes values 0  ⇧̂(k)  1. Note that typically, dim(Ĥ) = C,
since the entries of f̂ are likely to be linearly independent. Additionally, the entries of the output function
typically exhibit similar norms after training. (i.e. kf̂ik ⇡ kf̂jk). By definition, the total utility ⇧̂(p) = 1.
The smallest k for which ˆ⇧(p) ⇡ 1 provides a measure for the effective number of features used by the DNN.
By contrast, the total cumulative quality ⇧⇤(p) can still be much smaller than 1 if the training leads to a
function f̂ that significantly differs from the ground truth f⇤.

2.4 Eigenvalues and effective dimensions

The eigenvalues determine the speed of coefficient learning under MSE loss in a linear model, as shown in
Equation (3). They can also be written in the following way:

⇢k = hek|T [ek]i = hek|
pX

j=1

|�ji h�j |eki =
pX

j=1

h�j |eki2 , (10)

which shows that they are a measure of the projection of � along ek in function space. It is therefore of
interest to plot the distribution of the p eigenvalues as a function of index k.

It can also be useful to define scalar measures to characterize these distributions. For any vector a of
positive numbers ai, the exponential of Shannon entropy [Hill, 1973] can be used as a spectral dimension or
effective dimension measure:

Deff (a) = exp

 
�
X

i

aiP
j aj

ln

 
aiP
j aj

!!
. (11)

If the vector a has d components, then Deff (a) has a maximal value of d when all components are equal
(and non-zero). If the distribution of its components is non-uniform, then the effective dimension will be
lower than d, with a minimum of 1 if a only has one non-zero component.

The effective dimension or effective rank of T can be measured via Deff (⇢) where ⇢ = [⇢1, · · · , ⇢p]. In a
way that is analogous to the way that entropy quantifies the average number of bits for a symbol in the source
coding theorem, this measure implies that although T has a rank of p, it can in principle be compressed to
an operator of rank Deff (⇢)  p. From the perspective of �, Deff (⇢) measures how many ek you need in

7

2. Definitions and methodology
In this section, we define the series of measures we will use to quantify and visualise feature learning, and
explain how to calculate them efficiently. Then, we illustrate how our measures work using two simple
examples, a toy FCN on a 1-dimensional function, where the full eigenfunctions can be visualised, and a
CNN on MNIST with large enough p so that both coefficient learning and SGD on all layers can reach zero
training error.

2.1 Feature learning and coefficient learning

As illustrated in Figure 1(a), a DNN can be decomposed into a forward feature map � : � ! Rp that maps
the raw data (e.g. an image) to a p-dimensional vector, and a final linear layer of finite width p. We will
assume the data x 2 � are sampled from a true distribution q (i.e. x ⇠ q). From this simple decomposition it
follows that feature learning occurs when the forward feature map changes. More formally:

Definition 1 (Feature learning). A DNN is said to undergo feature learning if at any time t during training,
�(t) : � ! Rp differs from the forward feature map �(0) at initialization (t = 0). The feature maps are
considered distinct if there exists an x 2 � such that �(0)(x) 6= �(t)(x).

From this definition, it follows that if the feature map � remains fixed and does not change during training,
no feature learning takes place. In this case, only the coefficients (parameters) of the final linear layer are
adjusted during training, a scenario we define as follows:

Definition 2 (Coefficient Learning). A DNN is said to undergo coefficient learning if the forward feature
map �(t) : � ! Rp remains fixed at all times t during training such that 8x 2 �, �(0)(x) = �(t)(x). In this
case, no feature learning occurs, and only the parameters (coefficients) of the final linear layer of the DNN
are updated during training.

Coefficient learning occurs in the much-studied case of random features, where the parameters of � are
set by a random sample over a distribution, and then not allowed to change under training. In the infinite
width limit, it is equivalent to taking a sample from the NNGP [Radhakrishnan, 2022].

2.2 Features from the eigenfunctions of forward feature map

To define features, we begin by calculating the eigenfunctions ek : � ! R and eigenvalues ⇢k of � using a
standard analysis from the kernel literature [Smola and Schölkopf, 1998; Williams and Rasmussen, 2006] in
terms of the integral operator T : L2(�) ! L2(�):

T [f ](x0) :=

Z

�
�(x)T�(x0)f(x)q(x)dx, T [ek] = ⇢kek, (2)

where hei|eji = �ij , and the bra-ket notation in h·|·i denotes the L2 inner product defined on measure q (i.e.
hf |gi =

R
� f(x)g(x)q(x)dx). The integral operator T and its eigenfunctions [e1, e2, . . . , ep] are of particular

interest because T diagonalizes the dynamics of the linear model trained with gradient descent (GD) and
mean square error (MSE) loss1. Then the learning dynamics decompose into p independent dynamical
equations, one for each eigenfunction:

f(x) =
pX

k=1

hf |eki ek(x), hf |eki (t) = hf⇤|eki (1� e�⌘⇢kt). (3)

Here, we have assumed that all coefficients hf |eki are initialized to zero at t = 0, and that the MSE loss is
calculated with respect to a target function f⇤(x). Note that for fixed �, the speed at which each coefficient
hf |eki is learned depends on the eigenvalues ⇢k and the learning rate ⌘ of the GD algorithm used. The larger
the eigenvalue, the faster the coefficient is learned.

In the context of a DNN, the dynamics of Equation (3) describe what would happen if one were to fix at a
given time t0, the hidden layers, and thus the feature map �(t0)(x) (with eigenfunctions e0k), and subsequently
train only the final layer. This picture is equivalent to interpreting the feature map at t = t0 as the one
fixed at initialization so that there is no feature learning, and the DNN only learns the coefficients hf⇤|e0ki

1. Technically, these equations are obtained under a continuous limit of gradient flow. For completeness, we provide a full

derivation of the dynamics of linear models in Appendix E
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output of feature map � is much lower-dimensional. Indeed Deff (⇢) is 118.8 v.s. 11.2 for the last layer only
trained and SGD-trained DNNs respectively.

For MNIST, a rather modest width of p = 1024 was enough to achieve zero training error for a fixed
feature map. In Appendix A we provide further experiments exploring the relationship between the width of
the last layer and performance for CNN, ResNet18 and VGG architectures on CIFAR10 and CIFAR100. For
these more complex datasets, we estimate that a final layer width on the order of the size of the training set
will be needed to achieve zero training error.

2.8 The minimum feature (MF) regime and the extended feature (EF) regime

In the simple examples shown in Figures 2 and 3, a DNN trained with SGD converges on a solution where
the number of used features and the number of significant eigenvalues are both close to C. In other words,
Deff (Q̂) ⇡ C and Deff (⇢) ⇡ C respectively. For the C-way balanced classification task, we will say that a
DNN is in the “minimum feature (MF) regime” if the following qualitative properties are satisfied:

1. ⇧̂f̂ (k) increases linearly until k = C with ⇧̂(C) ⇡ 1. (Deff (Q̂) ⇡ C)).

2. The first eigenfunction e1 (which is a constant function, see Section 5.1 for further discussion) has an
eigenvalue of a1 > 0, while the next (C � 1)-eigenfunctions e2, · · · , eC all have eigenvalues of a2 > 0. In
addition, all other eigenvalues decrease significantly for k > C (Deff (⇢) ⇡ C).

It would also be useful to derive a quantitative scalar measure of the MF regime. To that end, we first
define the state of the operator T in which the above conditions are satisfied exactly.

Definition 4 (Minimum Projection (MP) operator). For a DNN on a balanced C-way classification task,
the integral operator T is an MP-operator TMP if it has two nontrivial eigenspaces, one being the span of
constant function 1 and the other orthogonal complement of 1 inside Ĥ, where Ĥ is C-dimensional function
space spanned by entries of the learned function f̂ : � ! RC expressed by the DNN. This is equivalent to that
TMP is given as

TMP [u] = a1 h1, ui1+ a2PĤ
(u) for all u (13)

where a1, a2 are positive scalars, and P
Ĥ

denotes the orthogonal projection onto Ĥ.

Ignoring the constant function, whose discussion is deferred to Section 5.1, the MP-operator is a simple
projection onto Ĥ. It is easy to see that the operator P

Ĥ
satisfies the qualitative properties above. First, P

Ĥ

has only C eigenfunctions, and Q̂ = C�1 by Equation (9), satisfying the first property6. The second property
follows since P

Ĥ
has C equal non-zero eigenvalues. We note that the TMP operator is closely related to the

phenomenon of NC [Papyan et al., 2020]. Indeed, in Section 5 we prove that TMP leads to NC under mild
conditions.

Having defined TMP , we will use the centered kernel alignment (CKA) measure (see e.g. [Kornblith et al.,
2019]) to calculate how close an empirically measured T is to the idealised operator TMP :

CKA(T, TMP ) =
Tr(c(T )c(TMP ))

kc(T )kF kc(TMP )kF
, (14)

where c(A) is centering operator (I � |1i h1|)A(I � |1i h1|), I is identity and |1i is the constant function 1 in
L2(�), and k · kF is the Frobenius norm. CKA has been used for comparing features of DNNs [Kornblith
et al., 2019], and also for studying the evolution of the NTK [Baratin et al., 2021; Lou et al., 2022]. Notably,
it has the advantage that the measure is invariant to isotropic scaling.

The CKA measure allows us to define a scalar quantitative criterion to measure whether a DNN is in
the MF regime, which we can use as an additional layer of assessment to complement our more qualitative
definitions 1. and 2. above:

Definition 5 (CKA Minimum Feature Regime Measure CKA ). For a distribution q and a class-balanced
learned function f̂ , a DNN is in MF regime if CKA = 1� CKA(T, TMP ) < ✏, where T is the feature kernel
(operator) of a DNN and TMP is the MP-operator.

6. This assumes that [f̂1, · · · , f̂C ] are C linearly independent, which is typically true for DNN trained on a balanced dataset.
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Toy model 2: coefficient learning v.s. feature learning.

Figure 2: Toy model demonstrating feature learning by a DNN A 4-layer FCN with width 1000,
having scalar input and output, is trained to learn the Heaviside step function f⇤ over the domain [�1, 1].
(a) At initialization (epoch 0), the first three eigenfunctions ei (dashed) of the feature map � are shown in
order of their eigenvalues. If � and thus the feature is fixed, nearly 20 features are needed to approximately
represent the target function f⇤ (solid grey). (b,c) Under training, the DNN employs a different strategy
and instead learns new features with better quality Q⇤

K , greatly reducing the number needed to describe the
target function f⇤ (i.e. Deff (Q⇤)epoch=0 = 3.18 and Deff (Q⇤)epoch=100 = 1.06) and the learned function f̂

(Deff (Q̂) from 1.79 to 1.03). To visualize how feature learning develops with epochs under training, the (d)
target function f⇤ and (e) the learned (self) function f̂ are projected onto the first k eigenfunctions using ??
and ?? respectively, illustrating that fewer features are needed after training. (f) The eigenvalues ⇢i decay
significantly faster post-training (Deff (⇢) from 1.62 to 1.18).

Figure 3: Comparing feature learning to coefficient learning for a wide CNN on MNIST A CNN
of width p = 1024 can be trained to 100% training accuracy on the full training set of MNIST in two different
ways. If the hidden layers are fixed at initialization, and only the last linear layer is trained, then all 1024
initial features are needed, as depicted by the blue line, to (a) express the target function (Deff (Q⇤) = 120.9)
and (b) express the learned function (Deff (Q⇤) = 68.40). In addition, (c) the eigenvalue spectrum follows
a power-law except for the first eigenvalue (Deff (⇢) = 118.8). By contrast, for vanilla SGD (orange lines
in (a-c)), only 10 features are needed (Deff (Q⇤) = 11.7, Deff (Q̂) = 10.5) and ⇢k10 is significantly larger
compared to other eigenvalues (Deff (⇢) = 11.19). Even though both methods achieve good test accuracy (in
brackets), the features used are dramatically different with SGD-trained network using only 10 features while
the last-layer-only training uses all 1024 features (Deff (⇢) to that they are 118.8 and 11.19).

8

Big differences:
Frozen features uses all 1024 features
Feature learning mainly uses just 10 features

Is strong feature learning a dynamical effect? 
SGD could have minimized the loss of the full DNN 
by coefficient learning, why did it not do so?
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happening within 5 epochs. This aligns with previous research indicating significant feature learning early in
training [??]. In (a,ii), we observe that the first C features dominate the learned function as early as epoch
1, indicating that the dynamics of training is largely about feature learning the first C features. In (a,iii),
the eigenvalues flatten for 1 < k  C and then drop at C leading to ⇢C � ⇢C+1. This indicates that only C
features or equivalently Deff (⇢) ⇡ C. Comparing the observation of (a,ii) and (a,iii) to that of ??, we know
that the model is in MFR, but this is also confirmed by the CKA measure.

In ??(b) an FCN is trained on the same dataset, which shows a good example of EFR. Here we observe
an example of when the model exhibits less strong feature learning and is still in the EFR at 200 epochs
when both training and test accuracies converged. When compared to the case of the ResNet18, ⇧⇤(k) for all
k are significantly lower, indicating poorer quality of features. In (b,ii), we observe that significantly more
than C features are needed to express the learned function. This is also reflected in Deff (Q̂) at epoch 200
where the values are 10.07 for ResNet18 and 34.60 for FCN, respectively. In (b, iii), we observe that the
eigenvalues show a much more gradual drop. Using a scalar measure, Deff (⇢) at epoch 200 is 10.465 for
ResNet18 and 129.9 for FCN, respectively.

3.2 Minimum feature regime for varying number of classes

In ??, we vary the number of classes C to 10, 20, and 100 for ResNet18 on the CIFAR100 dataset to
demonstrate how the MFR changes with C. From (b), we observe that only the first C features are utilized.
Additionally, in (c), we note that the first 1 < k  C eigenvalues are flat and significantly larger than ⇢C+1.

Figure 5: Minimum feature regime for different number of classes Resnet18 trained on 10, 20, and
100 classes from CIFAR100 for 600 epochs (until convergence). (a) All models show that the first C features
capture the majority of the alignment to the target function (i.e. ⇧⇤(C) ⇡ ⇧⇤(p)) where ⇧⇤(p) is plotted as
dotted horizontal line. Note that ⇧⇤(p), the alignment using all features, decreases as the number of classes
increases, reflecting the difficulty of the tasks. (b) All models are in the MFR with only C features being
used to express the learned function (i.e. ⇧̂(C) ⇡ 1). (c) All three cases show a typical MFR behavior of the
eigenvalue distribution, a flattening of eigenvalues for 1 < k  C, and then a rapid drop for ⇢k>C .

3.3 Transfer Learning

Transfer learning is the practice of training a model with one task and then using (transferring) the learned
features to a new task, with the goal of boosting performance[??]. Further training on the new task, which is
often called fine-tuning, can then be performed either by keeping the hidden layers fixed, which corresponds to
a fixed forward feature map �, or else by using the pre-trained network as the initialization for a conventional
SGD based training process on the new task. Typically, the quality of the transferred features is measured by
the generalization error on the new task. Here we will illustrate how the use of our feature learning measures
can provide additional information about transfer learning.

Transfer learning in our language is the transfer of the feature map �, but not the features themselves as
these also depend on the true data distribution q of the new task. Note that features (and eigenfunctions)
are defined via integral operator T in ??, encompassing not only the feature kernel but also q. Assuming that
the true underlying distributions of tasks are related, then the transferred feature map should also provide
appropriate features for the new task. In ?? we compare the performance of different kinds of transfer learning
for a ResNet18, taken from a standard PyTorch implementation, on the task of learning the CIFAR10 dataset.
The feature map is taken from 1) a ResNet18 pre-trained on MINST, which is simpler than CIFAR10, 2)

12

Minimum feature regime (MFR) for 10, 20 and 100 classes on CIFAR
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3. Learning final layer features

In this section we empirically explore in more detail how our measures of the features defined in ?? change
under training with SGD. We start by demonstrating some generic examples of the MFR and EFR. Next, we
apply our definitions to measure the quality of features used in transfer learning. We finally investigate how
our measures can shed light on some recent proposals of a lazy and rich feature-learning regime.

(a) ResNet18 on CIFAR10 (Minimum Feature Regime (MFR))

(b) FCN on CIFAR10 (Extended Feature Regime (EFR))

Figure 4: Final layer features at different epochs, showing the MFR and EFR (a) A ResNet18 is
trained on CIFAR10, demonstrating a typical example of the MFR. Projections onto the target function,
⇧⇤(k) (i) and the learned function, ⇧̂(k) (ii), as well as the normalized eigenvalue distributions ⇢k/⇢1 (iii) are
shown as a function of epochs. The parenthesis in the labels indicate the test accuracy at a given epoch, and
the square brackets denote the scalar CKA-based measure from ?? which we will take to denote the MFR
regime if it is smaller than 0.1 The insets show the same plots for all p = 512 features instead of the first 25.
At initialization, the learned function is dominated by the first eigenfunction, but after just one epoch, it is
dominated by the first 10 eigenfunctions, and is nearly in the MFR regime as measured by our CKA measure.
A related pattern can be seen in (iii) for the eigenvalues, where there is a substantial change already present
at epoch 1, and upon full training, the distributions become nearly flat for eigenvalues 2 to 10 (eigenvalue 1
is the constant function, see ??), after which the distribution drops off rapidly. (b) A 4-layer FCN with a
width of 512 is trained on CIFAR10 and provides a typical example of the EFR. Now, in contrast to the
MFR case for the ResNet18, (i) Pi⇤(C) < 0.25 and Pi⇤(p) < 0.5 indicates that neither the first C features
nor all p = 512 features offer a nearly accurate description of the target function as in the case of ResNet18.
(ii) FCN requires more number of features to express the learned function, as reflected in Deff (Q̂) at epoch
200 (34.60 for FCN and 10.07 for ResNet18). (iii) Moreover, the eigenvalues do not drop nearly as sharply as
in (a). Using quantitative measures, Deff (⇢) at epoch 200 is 129.9 for FCN while it is 10.46 for ResNet18.

3.1 Generic examples of MFR and EFR

??(a) shows ResNet18 on CIFAR10. We observe strong feature learning that leads to a tight MFR regime. In
(a,i), we observe that the quality of the first C features increases over training with 75% of the enhancement

11

Minimum feature regime (MFR) and extended feature regime (EFR)

MFR is like Neural Collapse (NC) but at much earlier timescales
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(i) f⇤ projection (ii) f̂ projection (iii) Eigenvalues

(a) Feature learning as a function of training set size

(b) Learning curves for variants of ResNet18 on CIFAR10

Figure 4: Feature learning as a function of training set size n. a) For a ResNet18 on CIFAR10 using
our standard hyperparameters with data augmentation (Section 2.9) we show (i) the cumulative quality
(Equation (7)), horizontal dotted lines denote the final quality/alignment ⇧⇤(p); (ii) the cumulative utility
(Equation (9)) and (iii) the eigenvalue distribution (Equation (2)) with a vertical dotted line at k = C. Above
the figure, the test accuracy is shown in curved brackets, while the CKA measure CKA (5) is shown in
square brackets. The MF regime is defined to occur when CKA  0.1. Both the final quality/alignment
⇧⇤(p) and the generalisation performance increase with increasing training size n, as expected. Between
training set sizes n = 1000 and n = 5000 there is a clear transition from the EF regime to the MF regime,
observable both in CKA and in the eigenvalue distribution. (b) Shows the associated learning curves for (i)
the test error, and (ii) the MSE loss for the ResNet18 model used in (a), and also for an NNGP for the same
ResNet18 architecture which has no feature learning, and the ResNet18 model without data augmentation
that matches the NNGP setup. The two feature learning models show a marked shift in the rate of decrease
of test error and test loss accompanied by a drop in CKA at roughly the same values of m, as shown in (iii).
The NNGP shows a more constant decay rate in error and loss.

13

Feature-learning as a function of data (learning curves)

47

Is image data special? 
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Position: Feature learning is decoupled from generalization in high capacity neural networks

Figure 1. Generalization error Egen versus training set size m for NNs and their corresponding NTK across three distinct target
functions: (a) FFNN on merged staircase (MSP) functions Appendix A.1, (b) FFNN on Multi-index functions Appendix A.2, and (c)
Wide ResNet on CIFAR-10. For (a) and (b), we observe a critical training set size m

⇤ where NNs outperfrom their NTK counterparts by
orders of magnitude (m⇤ ⇠ 103). We quantify this improvement in performance through the FL gap �NT (Definition 4.1). For (c), the
learning curve for the NN scales similarly to the NTK until ⇠ 104,

2021). Recent work has critically examined the explanatory
power of the NTK for NN generalization (Ortiz-Jiménez
et al., 2021; Vyas et al., 2022; Wenger et al., 2024; Ghorbani
et al., 2020). For a statistical physics-inspired predictive FL
theory, we refer to (Aiudi et al., 2025) and (Seroussi et al.,
2022).

2. Background
Let X ✓ Rn0 and Y ✓ RnL be the input and output space.
A dataset of size m, D = (xµ,yµ)

m
µ=1 is drawn i.i.d. from

the data generating distribution p(x,y). For some func-
tion f , the generalization is defined with respect to a loss
function ` : Y ⇥ Y ! R�0,

Egen(f) = E(x,y)⇠p(x,y) [`(f(x),y)] . (1)

In practice, we will approximate this quantity by averaging
over a finite test set.

Definition 2.1 (Feed-forward Neural Network (FFNN)). An
L-layer FFNN is a recursively defined map f✓ : Rn0 !
RnL :

h0 = xµ, hl = W l
�(hl�1) + bl, (2)

and f(xµ) = WLhL�1(xµ) + bL, where 1  l  L,
W l 2 Rnl⇥nl�1 , bl 2 Rnl , and � are nonlinear functions
applied element-wise. We assume all nl are equal for l 6=
0, L, and call this the width of the FFNN and denote P for
the total number of parameters.

FFNNs are trained with a stochastic optimizer, which mini-
mizes the empirical loss `(D) averaged over a training set.

2.1. Kernel methods

Definition 2.2 (Kernel & Features). A kernel is any sym-
metric, positive semi-definite function K : X ⇥ X ! R.
Let H be the reproducing kernel Hilbert space (RKHS) with
inner product h·|·i

H
. Then, any such kernel can be written

as an inner product kernel K(x,x0) = h�K(x)|�K(x0)i
H

.
The kernel’s feature map is given by:

�K : X ! H

Definition 2.3 (l-layer feature map). Consider the feature
map of the l < L’th layer of an FFNN at training time t,

�l(t) : X ! Rnl , xµ 7! hl(xµ). (3)

The l’th layer feature kernel K�l(t) : X 2 ! R is given by

K�l(xµ,x⌫ ; t) = �l(xµ; t)
>�l(x⌫ ; t). (4)

When evaluated over a finite dataset D, (K�l)µ⌫ can be
interpreted as the correlation matrix, measuring how similar
the features of xµ and x⌫ are at layer l.

Under certain regularity assumptions, Mercer’s theorem as-
serts a set of orthonormal basis functions of the RKHS
([e1, · · · , eNp

]) and a set of non-negative eigenvalues
[�1, · · · ,�N⇢

] that allow for a decomposition of the ker-
nel into K(xµ,x⌫) =

PN⇢

⇢=1 �⇢e⇢(xµ)e⇢(x⌫).

2.2. Kernel method – NN correspondence

When training an NN in the infinite-width limit, Yang & Hu
(2021) showed that there are two kinds of limits. With NTK

2

Niclas Göring
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(i) f⇤ projection (ii) f̂ projection (iii) Eigenvalues

(a) ResNet18 on CIFAR10 with label randomization

(i) f⇤ projection (ii) f̂ projection (iii) Eigenvalues

(b) ResNet18 on CIFAR10 with different stride values

Figure 9: MF regime for ResNet18 with randomised data and differences in stride. In (a) we
trained a ResNet18 on CIFAR10 with 0%(blue) 10%(orange) and 100%(green) label noise. All three cases
converge to the MF regime, but differ markedly in performance. (b) ResNet18 trained on full CIFAR10 with
stride=1,2 at the initial convolutional module. Both models are in the MF regime, but their performance
differs significantly. While the stride = 2 (orange) has a more distinct drop of eigenvalues at k = C, the
cumulative quality of the first C features, as well as the generalisation performance, is significantly larger
for stride = 1 model (blue). Note that in this plot, the stride=1 and stride=2 models have additional max
pooling after initial convolution making the model with stride=1 slightly different from the one used elsewhere
in this paper.

.

20

Strong feature learning for random data.

49

Learning rate and feature learning regimes

(a) ResNet18 on CIFAR100 with various learning rates

(b) VGG16 on CIFAR10 with and without batch normalization

(c) ResNet18 on CIFAR10 with various weight decay

Figure 12: Effect of hyperparameter tuning on MFR and generalization In (a) we explore the effect
of changing the learning rate for a ResNet18 on CIFAR100. Note that a lower learning rate leads to the EFR
regime and poorer performance. The best performance is for the intermediate learning rate, which is in the
MFR, but the higher learning rate is also in the MFR. In (b) we explore the effect of batch normalization
on and VGG16 using CIFAR10. While both cases exhibit MFR behaviour according our CKA cirterion,
we observe that batch normalization leads to a flatter eigenvalue distribution . In (c) we study the effect
of weight-decay for a ResNet18 on CIFAR10 where we observe tighter MFR with a larger weight-decay.
Although all three cases are in the MFR according to our CKA criterion, the MFR is tighter for the two
cases with weight decay, and tightest for the best generalizing case.
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Figure 15: Greedy layerwise training leads to a collapse of features in earlier layers. In contrast to
full backpropagation (solid), greedy layerwise training (dashed) leads to more pronounced alignment at lower
k for earlier layers, as seen, for example in the value of ⇧⇤(C) in (a). Note that even though the final layer
features for both models are indistinguishable in the (b) self projection, the quality of the features is notably
different in the (a) target projection. Similarly, the intermediate layer eigenvalues (c) are more MFR like
(dropping at k = C + 1) for layerwise training than for backpropogation.

Figure 16: Intermediate features with and without batch normalization. A VGG16 is trained on
CIFAR 100 with (solid) and without (dashed) batch normalization. For the definition of the layers, see
Appendix L.1. The inset shows both models at initialization. For VGG16 with batch normalization: (a)
the quality of features gradually increases over the layers, (b) the final layer shows clear MFR, and (c) the
intermediate layer eigenvalues decay at a slower rate. For VGG16 without batch normalization: (a) the
quality of features does not improve over the layers (b) intermediate features do not align to the learned
function and the model is in EFR, and (c) the eigenvalues of intermediate layers decay at a faster rate
compared to that at initialization. The experiment suggests that fast decay of eigenvalues of earlier layers
indicates a lack of information propagation and the creation of overfitting features in the deeper layers.

27

Greedy layerwise training v.s. full backpropogation 
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(a) f⇤ projection (b) f̂ projection (c) Eigenvalues

Figure 21: Greedy layerwise training leads to a collapse of features in earlier layers. In contrast
to full backpropagation (solid), greedy layerwise training (dashed) leads to more pronounced alignment at
lower k for earlier layers, as seen, for example in the value of ⇧⇤(C) for layers 2 and 3 in (a). However, there
is only a minute enhancement in ⇧⇤(k) for subsequent layers for greedy layerwise training, leading to final
poorer quality features compared to that of full backpropagation. Note that the difference in ⇧⇤(C) for the
final layer directly correlates with the performance as both models are in a tight MF regime as seen in (b).
Note that P̂ i(k) of the last layer is almost identical for both models (purple solid and dashed lines in (b)).
Similarly, at layers 3 and 4, the intermediate layer eigenvalues for greedy layerwise training in (c) are more
MF regime-like with a larger gap between ⇢C and ⇢C+1. This is quantified in Deff (⇢) as 348 vs. 608 for
layer 3 and 90.4 vs. 279 for layer 4 for layerwise training and full backpropagation, respectively.

(a) VGG16 CIFAR100

(b) WideResNet18 CIFAR100

Figure 22: Effect of batch normalization in CIFAR100. We clearly observe more alignment in the
intermediate layers, and the performance boost is more dramatic (22% to 72% for (a), 47% to 78% for (b)).
Moreover, without batch normalization, neither model achieved over 99% training accuracy in 600 epochs,
unlike other experiments in the paper. In this case, training was instead halted at 94% after 1200 epochs. (c)
The key distinction lies in the eigenvalues, where the decay rate was slowed down after the application of
batch normalization.
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Batchnorm’s effect on intermediate layers
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a baseline without pre-training, and 3) a model pre-trained on IMAGENET, which is more complex than
CIFAR10. We then fine-tune the model either by fixing the pre-trained feature map and only learning the
last layer, or by taking the pre-trained feature map as the initialization for a standard SGD optimization. As
expected, the performance is worse for pre-training on MNIST, and best for pre-training on IMAGENET,
with the standard baseline case in between. Note that, in contrast to the ResNet18 used in ??, the default
Pytorch implementation has significantly lower performance, which we will explain in more detail in ??. For
exact implementations, see ??.

As can be seen in ??, our measures provide a more fine-grained picture of what transfer learning does
to the features of the DNN trained on the new task. ??(a,i) depicts the alignment measure (⇧⇤(k)) or the
quality of the features for the pre-trained networks, with ⇧⇤(p) being larger for better performing models. For
fine-tuning with fixed hidden layers, the ⇧⇤(p) is directly linked to the generalization performance since the
fine-tuning process is a simple linear regression on the last layer features. ⇧⇤(p) < 0.25 for all three scenarios
indicates limited quality of features in expressing the target function. Moreover, with p = 512 ⌧ n = 50, 000,
there are insufficient number of features to fit all training data points. Features with poor quality and a
narrower last layer explain why fine-tuning with frozen layers cannot achieve high training accuracies.

On the other hand, during fine-tuning with full training, further feature learning occurs, which complicates
any analysis of how much the transferred features influence the outcomes. Nevertheless, we observe in ??(b,i)
that performance and the quality of the features correlate. The exact relationship between the quality of
initial features (??(a,i)) and trained features (??(b,i)) is left as future work, and will undoubtedly depend
on details such as the learning rate and other hyperparameters. Nevertheless, we believe that this simple
exercise points to the potential fruitfulness of using our feature learning measures to study transfer learning.

Figure 7: Features in the rich and lazy regimes compared to fixed features A width p = 256 4-layer
FCN is trained on 10,000 images of MNIST. We compare the standard case (↵ = 1) to ↵ = 100, which is well
above the threshold ↵/

p
p > 1 thought to herald the so-called lazy regime, and the coefficient learning regime,

where the feature map is kept fixed. For ↵ = 1, we observe reasonably good generalization (in brackets),
and standard MFR behavior, both qualitatively, and using our CKA measure (square brackets). Note that
this behavior contrasts with that of an FCN on CIFAR10 (see ??) where the EFR obtains. By contrast, for
↵ = 100, the so-called lazy regime, more features are needed to express the learned and target functions, and
the system is now clearly in the EFR. There is also a modest decrease in the generalization error. However,
the lazy regime still uses only a fraction of all 256 features with Deff (Q̂) = 18.70, in contrast with the fixed
feature-map case which appears to use all 256 with Deff (Q̂) = 72.22. Therefore in this example of the lazy
regime, significant feature learning still occurs. Note that for this width, the frozen feature-map system
cannot achieve zero training error, which is reflected in ⇧⇤(p) (horizontal dashed line) in (a). Nevertheless,
the qualitative manner in which this system uses all features closely resembles what happens at wider widths
where it can fully separate the data.

3.4 Feature learning in the lazy limit

In ?, it has been argued that scaling the output of the function by a sufficiently large constant ↵ and descaling
the loss in the following manner

L(x) = 1

↵2n

nX

i

`(↵(f(x(i))� f⇤(x(i))). (14)

14

Lazy regime for finite size DNNs
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regime, significant feature learning still occurs. Note that for this width, the frozen feature-map system
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L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. Advances in neural information processing systems, 32, 2019. 
M. Geiger, S. Spigler, A. Jacot, and M. Wyart. Disentangling feature and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment, 
2020(11):113301, 2020. 

rescale outputs by a factor alpha to enter lazy regime – here lazy regime = EFR, not coefficient learning due to small p
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• How should one measure feature-learning?
• Why does a DNN feature learn?
• Can we perturb around NTK to reach the feature-learning regime?
• What does feature-learning tell us about generalisation?  
• When is feature-learning bad for generalisation?

questions raised by feature-learning
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assumption that the exponent in Eq. (4.17) is related to our approximation K̃(x) by

K(x|A) +O(1) ⇡ aK̃(x) + b (4.23)

for constants a > 0 and b. These constants account for the O(1) term, potential

idiosyncrasies of the complexity approximation K̃, and other possible factors arising

from our approximations. Hence we approximate Eq. (4.17) as

P (x) . 2�aK̃(x)�b (4.24)

Note that the constants a and b depend on the mapping, but not on x.

As we discuss in the next Section and the example maps below, the values of a

and b can often be inferred a priori using one or more of: The complexity values of all

the outputs, the number of outputs (NO), the probability of the simplest structure,

or other values.

4.5 Making predictions for P (x) in computable maps

We can often make predictions about the values of a and b (Eq. (4.24)), via various

methods. Essentially we use any piece of information about the outputs or their

probabilities that is available to estimate, bound or approximate the values of a and

b. We now describe some methods, which we apply to various maps in the next

Section of this Chapter.

4.5.1 Estimating the range of K(x|A)

We will now estimate the range of values that we expect K(x|A) to assume. We

begin with a lower bound on possible complexity values: Given A we can compute

all the inputs, and produce all NO outputs. Hence, we can describe any x 2 O by its

index 1  j  NO in the set of outputs O. Therefore

K(x|A)  log(j) +O(log(log(j))) (4.25)
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LZ Complexity v.s. Entropy S = p log p + (1-p) log (1-p) for binary strings of length 30

Lempel Ziv complexity of binary strings

16

(a) (b) (c)

(d) (e) (f)

FIG. 10. Probability v.s. complexity for natural RNA SS of larger lengths. Complexity is measured in two ways: by CLZ from Eq. (18) for (a) L = 75,
a = 0.37 and b = 7; (b) L = 100, a = 0.34 and b = 15; and (c) L = 126, a = 0.37 and b = 21; and by the number of helices for (d) L = 75, a = 4 and
b = 19; (e) L = 100, a = 3.5 and b = 29; (f) L = 126, a = 3 and b = 45. Both measures show the same overall scaling.

input program fed into a (prefix) universal Turing machine (UTM) generates output x is bounded by

2�K(x)
 P (x)  2�K(x)+O(1) (16)

where K(x) is the Kolmogorov complexity of output x, Informally, Eq. (16) tells us is that upon randomly choosing programs, a UTM is
exponentially more likely to produce outputs with low K(x) than outputs with high K(x).

Despite its profound implications, the coding theorem has not been widely applied in science and engineering. One of the reasons is that
many practical systems are not UTMs, and the coding theorem (like much of AIT) depends on the computational power of UTMs. The
second reason is that the Kolmogorov complexity K(x) is formally uncomputable due to the famous halting problem of UTMs, first pointed
out by Turing [40]. In a recent paper [10] that was inspired by the AIT coding theorem, a practically useable upper bound for the P (x) that
output x obtains upon uniform sampling of inputs was derived for input-output maps f : I ! O that are simple, that is K(f) is independent,
or grows very slowly with the size of the input space. It takes the form

P (x)  2�aK̃(x)�b
. (17)

where K̃(x) is a suitable approximation to the Kolmogorov complexity of x, and a and b are constants that are independent of x, and which
can often be determined from some basic information about the map. Note that in contrast to the full coding theorem (16), Eq. (17) only
provides an upper bound. Nevertheless, a statistical lower bound can be derived [10, 41] showing that most of the probability weight in
P (x) will be close to the bound (17). Interestingly, outputs that are far from the bound can be shown to have inputs (in this case genomes or
bonding patterns) that themselves are unusually simple [41].

B. A Lempel-Ziv based compression approximation for K̃(x)

How to best choose a computable complexity measure that approximates the true Kolmogorov complexity is not an easy question to
answer, see for example [36, 42–45]) and further discussion in the supplementary material of [10]. There is a deep connection between
Kolmogorov complexity and compression. For the RNA and GRN, we use a compression method by Lempel and Ziv [46] in which a
(binary) string x is compressed by looking for patterns (words). The number of words Nw(x) forms the basis for this complexity measure
that has been a popular choice for approximating Kolmogorov complexity in the literature. In particular, it is thought to work better than
many rival methods for shorter strings [47, 48]. In [10] the so-called Lempel-Ziv complexity was defined as follows

CLZ(x) =

(
log2(n), x = 0n or 1n

log2(n)[Nw(x1...xn) +Nw(xn...x1)]/2, otherwise
(18)

1010101010101010101010101010101010101010101010101010101010101010
- Has high entropy but low LZ complexity
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Matthew effect dynamics 

Matthew effect in feature learning
During the training of a DNN via gradient descent- based algorithms, the quality
of features increases faster for smaller k (larger eigenvalues ρk). 

So far we can only prove its dynamical origin for the unconstrained feature model of Mixon et al [2020].

(a) WideResNet18, CIFAR10

(b) VGG16, CIFAR10

(c) WideResNet18, CIFAR100

(d) VGG16, CIFAR100

Figure 25: Alignment of each eigenfunction at different epochs. The alignment for individual features
is plotted at different epochs for various setups. In agreement with Hypothesis 1, the alignment is faster for
features with smaller k (see (i) of a,b,c,d). The trend is more evident for datasets with larger c (c, d).
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FIG. 1: Priors for different learning systems, architectures and datasets are Zipfian Solid lines denote
empirical data for 108 random samples for datasets of size m = 20 (blue) and m = 100 (orange). The m = 20 curve
suggests three regions, (1) an initial blocky fluctuating region up to rank of order m (2) a -1 Zipfian power law and (3)
a tail that falls off more rapidly than -1 at the very highest ranks. For m = 100 we only observe a tiny fraction of all
functions, so regime (3) is not observed. The dashed lines are the parameter-free normalised P (f) = C/R(f) from
Equation (3) which fit the empirical data remarkably well. See Appendix A for more datasets and architectures. (a-f)
show the priors of neural networks at initialisation, P (f) (see Equation (1)). (g) shows the prior of an RBF kernel,
and (h) shows the SGD priors PSGD(f) for a learning rate of 10�5. For a discussion of the effects of learning rates, see
Figure 3.

A. Just how Zipf?

We observe the following phenomenology. (1) An ini-
tial blocky fluctuating region that persists for ranks on
the order of m. (2) Then an extended section closely
approximating Zipf’s law. (3) A faster than Zipf decay
at the highest ranks. Note that (3) is only visible for
m = 20, since we find most of the 106 functions in 108

samples. The initial blocky functions in (1) are typically
functions with very low entropy (predictions dominated
by one class). This part of P (f) is the most sensitive to
the details of Ppar(✓). For example, the probabilities of
the two most frequent functions (all 0s or all 1s) depend
mainly on the ratio �b/�w (the weight initialisation of
the weights/biases respectively), where a smaller ratio
decreases those P (f). But these changes do not affect the
overall �1 slope at higher rank. See Figure S1e for an
example for an FCN on Fashion-MNIST. For intermediate
ranks (2) onward, we observe a clear Zipfian Rank(f)�1

scaling. For the larger m = 100 data sets our random
sampling would need to be many orders of magnitude
larger to enter the final regime. The final regime (3) is

only visible for small m, but seems to be super-Zipfian –
other experiments demonstrate that the tail is faster than
the slope.

In Appendix A we show that the same scaling holds
for other examples, including different widths for the
FCN (Figure S1d), as well a datasets up to m = 500, a
perceptron on Fashion MNIST and an FCN on boolean
data.

For a pure Zipf law with 2m functions, the normalised
probability distribution is P (f) = 1/(2 lnmRank(f). Be-
cause the first few functions clearly deviate from this
pattern, we instead calculate a normalising constant C
using

1�
tX

1

P (f) =

Z 2m

t

C

r
dr, (3)

where P (f) is known from sampling, and t is chosen to
ignore the first functions. The final result is not sensitive
to t if t is greater than the number of classes, so we will
consider this to be a parameter-free fit, provided this
recipe is followed. See Figure S2 for a demonstration of

Prior of high-capacity models exhibits a universal Zipf ’s law

C. Mingard et al., The priors of successful high capacity machine learning models exhibit a universal Zipf ’s law 
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Aitchison, L., Corradi, N. & Latham, P. E. Zipf’s law arises naturally when there are underlying, unobserved variables. PLoS comp. Biol  12, e1005110 (2016).
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Same global Zipf law, but different function orderings
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Fig. S3: Effect of architecture on the ordering of functions in the prior. We use cifar10, m = 20, with data
from Figure 1(b),(f) and Figure S1b. 108 samples. The diagonal plots show two separate samples from the same
dataset, of size 5⇥ 107, to determine the noise level. Clearly the inter-architecture correlations are much weaker than
the inter-architecture correlations, indicating that each architecture has a non-trivial difference in function ordering.
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FIG. 4: Chaotic regime with fixed L. 10-layer FCN with width 1024 on MNIST. (a) Prior plots (b) Kernel plots
(c) Rank of target function computed for �w = 0.75 assuming Zipf to be 2278 out of a maximum rank of 210000 by
reverse engineering PAC-Bayes and assuming tightness. Datapoints are generalisation error and estimated slope of
line, assuming same PAC-Bayes bound holds. Uncontrolled approximations deluxe, e.g. assuming function ordering
stays roughly the same.

Kij = �ij+(1��ij)⇢, where ⇢ controls the strength of the
correlation. Drawing a random variable from a GP with
this kernel is equivalent to drawing yi ⇠

p
⇢Y +

p
1� ⇢Zi,

where Y, Zi ⇠ N (0, 1) (see Appendix D).
For this simplified kernel, the prior P (f) can be calcu-

lated by considering equations of the form P (f1 > 0, f2 <
0 . . . , fn > 0), for all 2n arrangements of > and <, as
these correspond to binary classification. Because all ele-
ments are equi-correlated, we only need to calculate the
probability of k < signs and n� k < signs. Denoting the
number of negative signs as k, we have

P (k) =

Z
dx

e�x
2
/2

p
2⇡

�

✓r
⇢

1� ⇢
x

◆n�k ✓
1� �

✓r
⇢

1� ⇢
x

◆◆k

,

(14)

with

�(x) =

xZ

�1

dt
e�t

2
/2

p
2⇡

. (15)

For ⇢ = 0.5 we can integrate by parts to show that

P (k negative values) =
1

(n+ 1)
�
n

k

� ⇡ 1

(n+ 1)
e�nS(k/n).

We further argue in Appendix E that when ⇢ � 1/2,
we will get a Zipfian distribution. When ⇢ = 0 clearly
P (f) will be flat (every function is equally likely). Sean
said in the appendix that he thought this argument was
incomplete so this may need to be changed. Figure S5f
demonstrates this empirically, and shows that the distri-
bution remains approximately a power law with ↵(⇢) < 1
for ⇢ < 0.5.

The next section argues this applies when the kernel’s
off diagonals are not exactly equal, but instead cluster
around some mean.

Finally, it is worth noting that a 4-layer FCN with
ReLU activations will have every off-diagonal element
greater than 0.5.

Mention Boolean data briefly

A. Empirical results in the chaotic regime

For certain activation functions such as tanh (but not
for ReLU), DNNs have a well-defined transition between
an ordered and a chaotic regime [4, 5]. For a Gaussian
Ppar(⇥) with standard deviation �w, this regime becomes
relevant the larger �w, or the larger the depth L. In
Figure 4 (b) we show, for an FCN on MNIST, that P (f)
exhibits a distinctively sub-Zipfian scaling which becomes
more pronounced the further the system is pushed into
the chaotic regime (See also XX. . . ). This behaviour is
not surprising since it can proven (Appendix D) that
for an infinite width DNN in the chaotic regime, the
kernel tends to Kij = ⇢(�w) as depth goes to infinity –
i.e. equicorrelated with correlation dependent on �w. As
�w ! 1, ⇢ ! 0, in which case the prior is uniform over
functions.

Discuss figure chaos and mention their generalisation
errors if I can find them.

B. Beyond Kernel Methods

Sketch AIT arguments + Entropy plots.
I would like to consider adding K(f) = log2(R(f)).

I’ve seen something very similar to this somewhere else,
and I think it’s at worst an interesting point that can be
made – i.e. that for some ↵, P (f) / 2�↵K(f) Also just as
a general comment, PAC-Bayes also puts a bound on the
rank of the function. If PAC-Bayes is tight (which might
be true for exact Zipf), and we knew the generalisation
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(a) Prior P (f) versus rank. (b) Prior P (f) versus complexity (c) generalization error vs K

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

(g) Prior P (K) for uniform sampling (h) Prior P (K) for �w = 1, 8 (i) Bias variance

FIG. 1: Priors over functions and over complexity (a) Prior P (f) that a Nl-layer FCN with tanh activations generates
n = 7 Boolean functions f , ranked by probability of individual functions, generated from 108 random samples of parameters ⇥
over a Gaussian Ppar(⇥) with standard deviations �w = 1 . . . 8. Also compared is a ReLU-activated DNN. The dotted blue line
denotes a Zipf’s law prior [10] P (f) = 1/((128 ln 2)Rank(f)). (b) P (f) versus LZ complexity K for the networks from (a). (c)
generalization error versus K of the target function for an unbiased learner (green), and �w = 1, 8 tanh networks trained to zero
error with advSGD [10] on cross-entropy loss with training set S of size m = 64, for 1000 random initialisations. The error is
calculated on the remaining |T | = 64 functions. Error bars are one standard deviation. (d), (e), (f) Scatterplots of generalization
error versus learned function LZ complexity, from 1000 random initialisations for three target functions from subfigure (c). The
dashed vertical line denotes the target function complexity. The black cross represents the mode function. The histograms at the
top (side) of the plots show the posterior probability upon training as a function of complexity,PSGD(K|S) (error,PSGD(✏G|S)).
(g) The prior probability P (K) to obtain a function of LZ complexity K for uniform random sampling of 108, compared to a
theoretical perfect compressor. 90% of the probability mass lies to the right of the vertical dotted lines, and the dash-dot line
denotes an extrapolation to low K. (h) P (K) is relatively uniform on K for the �w = 1 system, while it is highly biased towards
complex functions for the �w = 8 networks. The large difference in these priors helps explain the significant variation in DNN
performance. (i) generalization error for the K-learning restriction for the �w = 1, 8 DNNs and for an unbiased learner, all for
|S| = 100. ✏S is the training error and ✏G is the generalization error on the test set. The vertical dashed line is the complexity
Kt of the target. Also compared are the standard realisable PAC and marginal-likelihood PAC-Bayes bounds for the unbiased
learner. In 104 samples, no solutions were found with K . 70 for the �w = 8 DNN, and with K & 70 for the �w = 1 DNN.

miser, with initial parameters taken from Ppar(�w), are
used. The generalization error and complexity of each
function found when the DNN first reaches zero training
error are plotted. Since there are 264 possible functions
that give zero error on the training set S, it is not surpris-

ing that the DNN converges to many different functions
upon different random initialisations. For the �w = 1
network (where P (f) resembles that of ReLU networks)
the most common function is typically simpler than the
target. By contrast, the less biased network converges

P(f) = A/r1+#

#" = total number of 
functions.
----------------------------
if $ = 0 (pure Zipf)
r1/2= N#
----------------------------
if $ > 0 (super-Zipf)
r1/2 ≈ $

!#
----------------------------
if $ < 0 (sub-Zipf)
r1/2 ≈ $

!# N#
----------------------------
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DNNs are trained using Stochastic gradient 
descent (SGD)  on a loss function.

Dominant  hypothesis in the field is that SGD 
has special properties that enhance  
generalization

Hold on: why should parameter function map predict DNN outcomes? 

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, arxiv.org: 2006.15191 
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wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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The application to DNNs was first shown in [23]. We note that the input-output map of interest is not
the map from inputs to DNN outputs, but rather the map from the network parameters to the function
f it produces on inputs X which was described in the main text in Definition 2.1. The prediction of
Eq. 4 for a DNN with parameters sampled randomly (from, for example, truncated i.i.d. Gaussians) is
that, if the map is sufficiently biased, then the probability of the DNN producing a function f on input
data xn

i=0 drops exponentially with increasing complexity of the function f . Note that technically we
should write f as f |X to indicate the dependence of the function modelled by the DNN on the inputs
X . We also note that the bound of Eq. 4 on its own does not force a map to be biased. It still holds
for a uniform distribution. But if the map is biased, then it will be biased according to Eq. 4.

In [23] it was shown empirically that this very general prediction held for the P (f) of a number of
different DNNs. This was done via direct sampling of the parameters of a small DNN on Boolean
inputs. NNGP calculations also showed a strong bias in more complex systems. In [24] some exact
results were proven for simplified networks, that were also consistent with the bound of Equation (4).
In particular, they proved that for a perceptron with no bias, upon randomly sampling the parameters
(with a distribution satisfying certain weak assumptions), any value of class-imbalance was equally
likely. Because there are many fewer functions with high class imbalance (low “entropy”) than
low class imbalance, and these are also simpler, this implied a bias of P (f) towards certain simple
functions. They also proved that for infinite-width ReLU DNNs, this bias gets monotonically stronger
as the number of layers grows. A different direction was pursued in [25], who showed that, upon
randomly sampling the parameters of a ReLU DNN acting on Boolean inputs, the functions obtained
had an average sensitivity to inputs which is much lower than if randomly sampling functions.
Functions with low input sensitivity are also simple, thus proving another form of simplicity bias
present in these systems.

On the other hand, in a recent paper [66], it was shown that for DNNs with activation functions such
as Erf and Tanh, the bias starts to disappear as the system enters the “chaotic regmie”, which happens
for weight variances above a certain threshold, as the depth grows [67] (note that ReLU networks
don’t have such a chaotic regime). While these hyperparameters are not typically used for DNNs,
they do show that there exist regimes where there is no simplicity bias. Note that the Levin bound
still holds, but P (f) is simply approaching a uniform distribution, and the bound becomes loose for
small complexity. These results are also interesting because, if the bias becomes weaker, then it may
also be the case that the correlation between PB(f |S) and PSGD(f |S) starts to disappear.

Several of these works use an important recent extensions of Neal’s seminal proof [68, 69] – that a
single-layer DNN with random i.i.d. weights is equivalent to a Gaussian process (GP) [70] in the
infinite width limit – to multiple layers and architectures [29, 30, 31, 71, 72].

A bias towards simplicity does not automatically imply good generalisation. Instead certain key
hypotheses are needed about the data, in particular that it is described by functions that are simple (in
a similar sense than the inductive bias). The assumption that a more parsimonious hypothesis is more
likely to be true has been influential since antiquity and is often articulated by invoking Occam’s
razor. However, the fundamental justification for this heuristic is disputed [73]. For the machine
learning literature see e.g. [74, 75, 76, 77]. For links between the razor and AIT/Solomonoff relevant
to Eq. (4), see e.g. [78, 79] for a spirited discussion.

Studies that imply that the data is somehow “simple” include an influential paper by Lin and
Tegmark [26] invoking arguments mainly from statistical mechanics to argue that deep learning
works well because the laws of physics typically select for function classes that are “mathematically
simple”, and so easy to learn. For the much used MNIST data set, Spigler et al. [28] show that while
the data is embedded in a 282 = 784 dimensional manifold, it has a much lower effective dimension
deff = 15. Individual numbers have effective dimensions that are even lower, ranging from 7 to
13 [80]. So the functions that fit MNIST data are much simpler than those that fit random data [27].

A.3 Bayesian formulation of the relation between bias of untrained networks and trained
networks

The effect of the bias in P (f) on a network conditioned on a training set S can be formalised in
a Bayesian framework. To apply Bayesian inference for supervised learning (or function approx-
imation), we need to begin with a prior over functions, which in this case is simply P (f). If our
‘observation’, that is the training set S, corresponds to the exact values of the function which we
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wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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regime as follows: Given that DNNs can memorise randomly labelled image datasets, which leads to
poor generalisation, why do they behave so differently on correctly labelled datasets and select for
functions that generalise well? The solution to this conundrum must be that SGD trained DNNs have
an inductive bias towards functions that generalise well (on structured data).

The possibility that SGD is not just good for optimisation, but is also a key source of inductive bias
has generated an extensive literature. One major theme concerns the effect of SGD on the flatness of
the minima found, typically expressed in terms of eigenvalues of a local Hessian or related measures.
A link between better generalisation and flatter minima has been widely reported [8, 9, 10, 11, 12, 13]
(but see also [14]). A well-known result [9] is that DNNs trained with SGD find "flatter" minima for
smaller batch sizes, and also generalise better than identical models trained with large batch SGD
(by up to ⇠ 5%). Nevertheless, the overall differences between SGD and full-batch gradient descent
(GD) are still relatively small (see e.g. [11]). Moreover these batch-size effects can disappear when
the learning rate is also adjusted [15, 16, 17].

Direct theoretical work on SGD has also generated a large and sophisticated literature. For example,
in [18] it was demonstrated that SGD finds the max-margin solution in unregularised logistic regres-
sion, whilst it was shown in [19] that overparameterised DNNs trained with SGD avoid over-fitting
on linearly separable data. Recently, [20] proved agnostic generalization bounds of SGD-trained
neural networks. While an impressive theoretical achievement, no empirical test of the tightness of
the bounds is performed. Other recent work [21] suggests that gradient descent performs a hidden
regularisation in normalised weights, but a different analysis suggests that such implicit regularisation
may be very hard to prove in a more general setting for SGD [22]. Overall, while SGD and its related
algorithms are excellent optimisers, there is no consensus on what inductive bias SGD provides for
DNNs. (For further discussion of this SGD related literature see Appendix A).

An alternative approach is to consider the inductive properties of untrained DNNs. Recent theoretical
and empirical work [23, 24, 25] suggests that the probability P (f) that an untrained DNN outputs
a function f upon random sampling of its parameters (typically the weights and biases) is strongly
biased towards “simple” functions with low Kolmogorov complexity (see also Appendix A). A widely
held assumption is that such simple hypotheses will generalise well – think Occam’s razor. Indeed,
many processes modelled by DNNs are simple [26, 27, 28]. If the inductive bias towards simplicity
is preserved throughout training, then this could help explain the DNNs generalisation conundrum.

The effect of bias in an untrained DNN on training can be analysed within a Bayesian inference
framework with P (f) as a prior. Consider supervised learning with training data S corresponding
to the exact values of the function which we wish to infer (i.e. no noise). This corresponds to a
0-1 likelihood P (S|f), indicating whether the data is consistent with the function. Formally, if
S = {(xi, yi)}mi=1 corresponds to the set of training pairs, then P (S|f) = 1 if 8i, f(xi) = yi and 0
otherwise. The posterior probability PB(f |S) follows from Bayes rule:

PB(f |S) =
P (S|f)P (f)

P (S)
. (1)

where, for discrete functions, the marginal likelihood P (S) =
P

f
P (S|f)P (f) =

P
f2C(S) P (f),

with C(S) the set of all functions compatible with the training set. For C(S), that same set of
functions, the posterior probability PB(f |S) = P (f)/P (S). For a fixed S, P (S) is constant, and so
all the bias in PB(f |S) is translated over from the prior P (f).1

We can also calculate the probability PSGD(f |S) that a DNN trained with SGD to zero error on
S, converges on function f . The main question we will explore in this paper is: How similar is
PB(f |S) to PSGD(f |S)? If the two are significantly different, then SGD may provide an important
source of inductive bias. If the two are similar over a wide range of architectures, datasets, and
optimisers, then the inductive bias is primarily determined by the prior P (f) of the untrained DNN.

1.1 Main results summary

We performed extensive sampling experiments to calculate PSGD(f |S). Functions are distinguished
by the way they classify elements on a test set E. We use the Gaussian Processes (GP) approximation
to estimate PB(f |S) for the same systems. Our main findings are:

1This holds exactly for a fixed S, but not upon further averaging over training sets (Appendix ZZ).
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If we wish to infer (i.e. no noise) at some points, then we need a 0-1 likelihood on training data   
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and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,
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of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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P(S) =  marginal likelihood or evidence 

P(f|S) = P(f)/P(S) or 0, so bias in prior translates over to bias in posterior

Functions that fit S

Bayesian function picture for supervised learning on S 

Posterior for functions conditioned on training set S  follows from Bayes rule
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SGD acts (almost) like a Bayesian sampler 

FCN on binarized MNIST – training set=10,000,  test set=100 images 2100 = 1030 possible functions fit the test set.

SGD acts like a Bayesian optimiser ….

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, arxiv.org: JMLR 22(79):1−64, 2021 

(a) PB(f |S) v.s.PSGD(f |S) (b) PB(f |S) v.s. ‘G (c) CSR complexity v.s. ‘G

(d) f found by NNGP in (a). (e) PB(f |S) v.s.PAdagrad(f |S) (f) PB(f |S) v.s.PAdagrad(f |S)

Figure 1: Comparing the Bayesian prediction PB(f |S) to POPT(f |S) for SGD and
Adagrad, for an FCN on MNIST [We use training/test set size of 10,000/100; vertical
dotted blue lines denote 90% probability boundary; dashed grey line denotes x = y.]
(a) PB(f |S) v.s.PSGD(f |S) for MSE loss; n = 106 samples.
(b) PB(f |S) v.s. ‘G for the full range of possible errors on E (with CE loss). 20 random
functions were taken per value of error. The solid line shows average over log(PB(f |S)),
error bars are 2 standard deviations. The dashed line shows the weighted fl(‘G)ÈPB(f |S)Í,
where fl(‘G) is the number of functions with error ‘G. The small red box illustrates the
range of probability and error found in (a).
(c) CSR complexity for functions in PSGD(f |S) from the experiments in fig (b).
(d) Functions from (a) found by the GP (È‘GÍGP = 1.61%) and SGD (È‘GÍ = 1.88%): 913
functions are found by both, taking up 97.70% of the probability by SGD, and 99.96% by
GP.
(e) PB(f |S) v.s. PAdagrad(f |S) for MSE loss; n = 105 samples, and overtrained until 64
epochs had passed with zero error (È‘GÍ = 1.53%).
(f) is as (e) but with CE loss, meaning that the EP approximation is needed for PB(f |S),
making it slightly less accurate (È‘GÍ = 2.63%).

8

We use Gaussian Processes (GP)s to calculate PB(f|S) – 
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Intuition: for very strong bias:   Basin of attraction ~ Basin size (P(f)) 

Problem: why should parameter function map predict outcomes? 

Is SGD a Bayesian sampler? Well, almost, Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, Ard A. Louis, arxiv.org: 2006.15191 

and doesn’t exactly converge to the Bayesian posterior (Stephan et al., 2017; Brosse et al.,
2018). Nevertheless, it has been conjectured that with small step size, SGD may approximate
the Bayesian posterior (Naveh et al., 2020; Cohen et al., 2019), as we empirically find in
our experiments. These connections are rich and worth exploring further in this context.
Nevertheless, some caution is needed with these analogies to statistical mechanics because
they depend on assumptions which may only to hold on prohibitively long time-scales.

(a) Schematic loss landscape (b) Corrupted data, CE loss (c) PB(f |S) v.s. PSGD(f |S)

Figure 8: Schematic landscape and e�ects of randomising training labels. (a)
Cartoon of a biased loss-landscape. The three functions f1, f2 and f3 all reach zero
classification error (dashed red line), but due to bias in the parameter-function map,
the “basin size” VB(f1) ∫ VB(f2), VB(f3), which typically implies that for the “basins
of attraction” VSGD(f1) ∫ VSGD(f2), VSGD(f3). PB(f |S) is proportional to VB(f), and
PSGD(f |S) is proportional to VSGD(f). (b) PB(f |S) (solid) and fl(‘G)PB(f |S) (dashed) v.s.
‘G, for test set of size 100 and CE loss (as in Figure 1b) but including label corruption
c. (b) PSGD(f |S) v.s. PB(f |S) on MNIST with a 2-layer 1024 node wide FCN with MSE
loss, test set size 50, and 20% of the training labels randomised (È‘GÍSGD = 13.4% and
È‘GÍGP = 5.80%). Here functions with frequency < 10 are also shown on the plot. The
correlation is much less pronounced than for the unrandomised case shown in Figure 1a.
Dots on the axes denote functions found by just one of the two methods. Let F be the set of
functions found by both the optimiser and under GP sampling. Then

q
fœF PB(f |S) = 99.3%,

and
q

fœF PSGD(f |S) = 24.3%. In other words, while the Adam optimiser finds almost all
functions with high PB(f |S), it also finds many functions with low PB(f |S). The much
weaker bias under label corruption observed in (b) likely explains the weaker correlation
between the Bayesian results and that of the optimiser found here.

A better analogy may be to the “arrival of the frequent” phenomenon in evolutionary
dynamics (Schaper and Louis, 2014), which, like the “basin of attraction” arguments, does
not require steady state. Instead it predicts which structures are likely to be reached first
by an evolutionary process. For RNA secondary structures, for example, it predicts that a
stochastic evolutionary process will reach structures with a probability that to first order
is proportional to the likelihood that uniform random sampling of genotypes produces
the structure. Indeed, this phenomenon – where the probability upon random sampling
predicts the outcomes of a complex search process – can be observed in naturally occurring

19

Similar effect in evolutionary theory under strong bias:
The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima
Steffen Schaper and Ard A. Louis, PLoS ONE 9 (2): e86635 (2014)
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1)Can you find a super-Zipfian learner? 

2) What is the link between Zipf and 
complexity measures? 

Questions about Zipf’s law
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WHY FLATNESS CORRELATES WITH GENERALIZATION FOR DEEP NEURAL NETWORKS

flatness and generalisation in light of the “volume” V (f)
of a function f , defined as a weighted integral over all
parameters for which the DNN maps to f . Intuitively, we
expect local flatness measures to typically be smaller (flatter)
for systems with larger volumes. Nevertheless, there may be
regions of parameter space where local derivatives are very
large. these are probed, for example, with the alpha-scaling
transformation. Since the volume is parameter independent,
it is invariant to alpha-scaling re-parameterization.

In the context of supervised learning with training to zero
error on a training set, we show that the volume is directly
proportional to the Bayesian posterior. Following Mingard
et al. (2020) we therefore expect log(V (f)) to correlate lin-
early with generalisation performance. We show empirically
that volume is indeed a robust predictor of generalisation.
By contrast, while the flatness-generalisation correlation
works for vanilla SGD, it can be broken, for example, by al-
pha scaling, or else in some cases by the use of certain SGD
variants such as Adam (Kingma & Ba, 2014) or entropy-
SGD (Chaudhari et al., 2019).

2. Definitions and notation
2.1. Supervised learning

For a typical supervised learning problem, the inputs live
in an input domain X , and the outputs belong to an output
space Y . For a data distribution D on the set of input-output
pairs X⇥Y , the training set S is a sample of m input-output
pairs sampled i.i.d. from D, S = {(xi, yi)}mi=1 ⇠ Dm,
where xi 2 X and yi 2 Y . The output of a DNN on
an input xi is denoted as ŷi. Typically a DNN is trained
by minimising a loss function L : Y ⇥ Y ! R, which
measures differences between the output ŷ 2 Y and the
observed output y 2 Y , by assigning a score L(ŷ, y) which
is zero when they match, and positive when they don’t
match. DNNs are typically trained by using an optimization
algorithm such as SGD to minimize the loss function on
a training set S. The generalisation performance of the
DNN is then measured on a test set E = {(x0

i, y
0
i)}

|E|
i=1 ⇠

D|E|. For classification problems, the generalisation error
is defined as ✏(E) = 1

|E|
P

x0
i2E [ŷi 6= y

0
i], where is the

standard indicator function which is one when its input is
true, and zero otherwise.

2.2. Flatness measures

Perhaps the most natural way to measure the flatness of
minima is to consider the eigenvalue distribution of the
Hessian Hij = @

2
L(w)/@wi@wj once the learning process

has converged (typically to a zero training error solution).
Sharp minima are characterized by a significant number
of large positive eigenvalues �i in the Hessian, while flat
minima have numerous small eigenvalues. Some care must

be used in this interpretation because it is widely thought
that DNNs converge to stationary points that are not true
minima, leading to negative eigenvalues and complicating
their use in measures of flatness. Typically, only a subset of
the positive eigenvalues are used (Wu et al., 2017; Zhang
et al., 2018). In this paper, we only use the logarithm of
largest eigenvalue, which we find correlates well with other
eigenvalue based measures used in the literature.

Hessians are typically very expensive to calculate. For this
reason Keskar et al. (2016) introduced a computationally
more tractable measure called "sharpness":

Definition 2.1 (Sharpness). Given parameters w0 within
a box in parameter space C✏ with sides of length ✏ > 0,
centered around a minimum of interest at parameters w, the
sharpness of the loss L(w) at w is defined as:

sharpness :=
maxw02C✏ (L(w

0)� L(w))

1 + L(w)
⇥ 100.

In the limit of small ✏, the sharpness can be related to the
spectral norm of the Hessian (Dinh et al., 2017):

sharpness ⇡
�����r2

L(w)
�����

2
✏
2

2(1 + L(w))
⇥ 100.

2.3. Functions and volume

We first clarify how we represent functions in the rest of
paper, using classification as an example:

Definition 2.2 (Representation of Functions). Consider a
DNN N , a training set S = {(xi, yi)}mi=1 and test set
E = {(x0

i, y
0
i)}

|E|
i=1. We represent the function f(w) with

parameters w associated with N as a string of length
(|S|+ |E|), where the values are the labels ŷi and ŷ

0 that N
produces on the concatenation of training inputs and testing
inputs.

For example, for binary classification the function is rep-
resented as a binary string of length |S| + |E|. In some
cases, such as the Boolean system described in Valle-Pérez
et al. (2018) and treated in section 5.1, this representation
is typically complete because it is feasible to enumerate
all possible inputs. However, for real-life datasets the total
number of possible inputs is hyper-astronomically large,
and so the definition above is usually a coarse-grained one
based on the user’s choice of S and E. For MNIST (LeCun
et al., 1998), for example, all inputs would include the set
of 28x28 integer matrices whose entries take values from
0-255, which gives 256784 possible inputs.

The link between functions and a DNN is described by the
parameter-function map which was first described in Valle-
Pérez et al. (2018):

A function based picture for DNNs

f(w) = (5,0,4,1,9) (0 errors)
f(w) = (5,0,4,7,9)  (1 error)

Example:  labels predicted on 5 MNIST inputs:
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wish to infer (i.e. no noise), at some points, then we need to use a 0-1 likelihood P (S|f), which just
indicates whether the data is consistent with the function. Formally, if S = {(xi, yi)}mi=1 corresponds
to the set of training pairs, then we let

P (S|f) =
⇢
1 if 8i, f(xi) = yi

0 otherwise .

Note that this quantity is technically P (S|f ; {xi}), but we denote it as P (S|f) to simplify notation.
We will use a similar convention throughout, whereby the input points are (implicitly) conditioned
over. Bayesian inference then corresponds to inferring a function according to Bayes rule

P (f |S) = P (S|f)P (f)

P (S)
, (5)

also called the Bayesian posterior. P (S) is also called the marginal likelihood or Bayesian evidence,
and it is the total probability of all functions compatible with the training set. For a fixed training set,
all the variation in P (f |S) among f consistent with S comes from the prior P (f) of the untrained
network since P (S) is constant. Thus a bias in the prior is essentially translated over to the posterior.

For such an algorithm, the PAC-Bayes theorem [81, 23], roughly states that the generalisation error ✏
is bounded, with probability 1� � as

✏ . � logP (S)� log (�)

m
,

where m is the size of the training set. In [23], the authors applied the bound to DNNS, calculating
P (S) by approximating the output of randomly sampling the DNN parameters with a Gaussian
process. The bound was shown to provide relatively tight predictions for optimiser-trained DNNs
for a FCN and CNNs on MNIST, Fashion-MNIST and CIFAR-10. Moreover, the bound reproduced
trends such as the increase in the generalisation error upon an increased fraction of randomised labels.

We note that the bound is only rigorously proven for DNNs trained in an exact Bayesian fashion,
i.e. by using the distribution over P (f) obtained by randomly sampling parameters, and performing
a Bayesian update as described in Equation (5) to obtain the posterior P (f |S). So its success in
reproducing behaviour of SGD-trained DNNs would be surprising if the optimiser itself was an
important source of implicit bias. The authors of [23] conjecture that because of the huge bias in the
parameter-function map, relatively small deviations of the optimisation algorithm from Bayesian
sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.

To recap, there are really two distinct hypotheses put forward in [23, 24]. The first, inspired by AIT
and in particular by Eq. (4), is that the parameter-function map is exponentially biased towards simple
functions, together with the principle that such a bias promotes better generalisation. The second,
inspired by the good performance of the PAC-Bayes bound in describing the generalisation behaviour
of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
inference is probably enough to answer question 1, and the answer shouldn’t depend too strongly on
the training method used.

In this context an interesting development is the introduction of the Neural Tangent Kernel (NTK) by
Jacot et al. [33] which approximates the dynamics of an infinite width DNN with parameters that
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of DNNs trained by SGD, is that the parameter-function map is the primary source of their inductive
bias, and that any regularisation due to the optimiser or loss function are second-order effects (i.e.
coming from a relatively small deviations from the ideal Bayesian behaviour).

Our current paper is primarily about testing this second hypothesis in more detail, by studying
how similar PSGD(f |S) and PB(f |S) are. At the same time, the application of hypothesis 2 to
understanding generalisation depends on strong bias, for which hypothesis 1 makes a specific
proposal.

The stream of work empirically studying the neural network GPs (NNGPs) is also relevant in the
context of question 1 [29, 30? ]. Remarkably, these NNGPs, which are equivalent to Bayesian
inference on infinite-width DNNs, exhibit fairly similar generalisation performance to their SGD
trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
shouldn’t depend too strongly on the network size or parameter count. Secondly, that Bayesian
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sampling do not play a big role in determining which functions the algorithm finds. This would
explain why the PAC-Bayes bounds work so well for optimiser-trained DNN models.
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functions, together with the principle that such a bias promotes better generalisation. The second,
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trained finite-width DNN counterparts. This correspondence tells us several things which are useful to
answer question 1. Firstly, that it’s probably sufficient to study the infinite-width limit, and the answer
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P(S) =  marginal likelihood or evidence 

P(f|S) = P(f)/P(S) or 0, 
bias in prior translates over to bias in posterior

regime as follows: Given that DNNs can memorise randomly labelled image datasets, which leads to
poor generalisation, why do they behave so differently on correctly labelled datasets and select for
functions that generalise well? The solution to this conundrum must be that SGD trained DNNs have
an inductive bias towards functions that generalise well (on structured data).

The possibility that SGD is not just good for optimisation, but is also a key source of inductive bias
has generated an extensive literature. One major theme concerns the effect of SGD on the flatness of
the minima found, typically expressed in terms of eigenvalues of a local Hessian or related measures.
A link between better generalisation and flatter minima has been widely reported [8, 9, 10, 11, 12, 13]
(but see also [14]). A well-known result [9] is that DNNs trained with SGD find "flatter" minima for
smaller batch sizes, and also generalise better than identical models trained with large batch SGD
(by up to ⇠ 5%). Nevertheless, the overall differences between SGD and full-batch gradient descent
(GD) are still relatively small (see e.g. [11]). Moreover these batch-size effects can disappear when
the learning rate is also adjusted [15, 16, 17].

Direct theoretical work on SGD has also generated a large and sophisticated literature. For example,
in [18] it was demonstrated that SGD finds the max-margin solution in unregularised logistic regres-
sion, whilst it was shown in [19] that overparameterised DNNs trained with SGD avoid over-fitting
on linearly separable data. Recently, [20] proved agnostic generalization bounds of SGD-trained
neural networks. While an impressive theoretical achievement, no empirical test of the tightness of
the bounds is performed. Other recent work [21] suggests that gradient descent performs a hidden
regularisation in normalised weights, but a different analysis suggests that such implicit regularisation
may be very hard to prove in a more general setting for SGD [22]. Overall, while SGD and its related
algorithms are excellent optimisers, there is no consensus on what inductive bias SGD provides for
DNNs. (For further discussion of this SGD related literature see Appendix A).

An alternative approach is to consider the inductive properties of untrained DNNs. Recent theoretical
and empirical work [23, 24, 25] suggests that the probability P (f) that an untrained DNN outputs
a function f upon random sampling of its parameters (typically the weights and biases) is strongly
biased towards “simple” functions with low Kolmogorov complexity (see also Appendix A). A widely
held assumption is that such simple hypotheses will generalise well – think Occam’s razor. Indeed,
many processes modelled by DNNs are simple [26, 27, 28]. If the inductive bias towards simplicity
is preserved throughout training, then this could help explain the DNNs generalisation conundrum.

The effect of bias in an untrained DNN on training can be analysed within a Bayesian inference
framework with P (f) as a prior. Consider supervised learning with training data S corresponding
to the exact values of the function which we wish to infer (i.e. no noise). This corresponds to a
0-1 likelihood P (S|f), indicating whether the data is consistent with the function. Formally, if
S = {(xi, yi)}mi=1 corresponds to the set of training pairs, then P (S|f) = 1 if 8i, f(xi) = yi and 0
otherwise. The posterior probability PB(f |S) follows from Bayes rule:

PB(f |S) =
P (S|f)P (f)

P (S)
. (1)

where, for discrete functions, the marginal likelihood P (S) =
P

f
P (S|f)P (f) =

P
f2C(S) P (f),

with C(S) the set of all functions compatible with the training set. For C(S), that same set of
functions, the posterior probability PB(f |S) = P (f)/P (S). For a fixed S, P (S) is constant, and so
all the bias in PB(f |S) is translated over from the prior P (f).1

We can also calculate the probability PSGD(f |S) that a DNN trained with SGD to zero error on
S, converges on function f . The main question we will explore in this paper is: How similar is
PB(f |S) to PSGD(f |S)? If the two are significantly different, then SGD may provide an important
source of inductive bias. If the two are similar over a wide range of architectures, datasets, and
optimisers, then the inductive bias is primarily determined by the prior P (f) of the untrained DNN.

1.1 Main results summary

We performed extensive sampling experiments to calculate PSGD(f |S). Functions are distinguished
by the way they classify elements on a test set E. We use the Gaussian Processes (GP) approximation
to estimate PB(f |S) for the same systems. Our main findings are:

1This holds exactly for a fixed S, but not upon further averaging over training sets (Appendix ZZ).
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where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f ) = f ]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.
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where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f ) = f ]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.
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(a) (b) (c)

(d) (e) (f)

(g) Target function LZ = 31.5 (h) Target function LZ = 66.5 (i) Target function LZ = 101.5

Figure 2: (a) hP (Sm|K)i versus Lempel-Ziv complexity. To generate this the top 5 functions with
the smallest generalisation error when compared to the target function were found by sampling
the function space. The average of their generalisation errors was then found and used to compute
(1� h✏(f)i)m where m denotes the training set size. This acts as a proxi for the average probability
of having a training set S of size m given that your target functions has LZ complexity K (b) A-priori

probability P (K) versus Lempel-Ziv Complexity based on 106 samples of a neural network with
10 hidden layers initialised i.i.d with �w = 1, 8. (c) A comparison of P (K|Sm) computed using
Bayesian statistics specifically the A-priori probability P (K) from (b) combined with hP (Sm|K)i
from (a) versus P (K|Sm) computed by training various 10-layered network using SGD. The com-
parison was carried out for 10 different target function over a range of LZ complexities. (d), (e)
and (f) compare the histograms of output function complexity for 3 such target functions. The blue
bars show data from networks initialised in the ordered regime where the weight standard deviation
�w = 1 and the red / orange bars represent data from networks initialised in the chaotic regime where
the weight standard deviation �w = 8.
Ard: I wonder if we can put the error spectra for each target function above each of the three
plots?
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where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f ) = f ]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.

5 INTRINSIC BIAS IN A SIMPLE DNN IMPLEMENTING BOOLEAN FUNCTIONS

W

3

2

(a) Prior P (f) versus rank. (b) Prior P (f) versus complexity (c) Generalisation error vs complexity

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

(g) Prior P (K) for uniform sampling (h) Prior P (K) for �w = 1 (i) Prior P (K) for �w = 8

FIG. 1: Priors over functions and over complexity (a) Prior P (f) for FCNs on n = 7 Boolean functions, ranked by
probability of individual functions, generated from 108 random samples of parameters ⇥ over a Gaussian Ppar(✓) with eight
standard deviation �w. For the tanh activation functions, the prior changes with increasing �w (b) Prior probability of a
function P (f) versus Lempel-Ziv complexity for the networks from (a). (c) Generalisation error versus Lempel-Ziv complexity of
the target function for two networks from (b) training to zero error on a training set S of size m = 64, with the error calculated
on the remaining |T | = 64 functions. The networks were trained with advSGD [12] on cross-entropy loss for 1000 random
initialisations. Error bars are one standard deviation. (d), (e), (f) Generalisation error versus learned function LZ complexity
scatterplots, for 1000 random initialisations for three target functions from subfigure (c). The dashed vertical line denotes the
target function complexity. The black cross represents the most common learned function. The histograms on top of the plots
show the posterior probability upon training as a function of complexity: PSGD(K|S) while the histograms on the side show the
posterior probability PSGD(✏|S) that a specific generalisation error ✏ is found. (g) shows the prior probability P (K) to obtain a
function of complexity K for uniform random sampling of 108 functions, while (h) and (i) show P (K) for the �w = 1 and
�w = 8 networks respectively. The large difference in these priors helps explain the large variation in DNN performance.

it solves the overparameterisation/large capacity prob-
lem), can we understand how to improve its performance
further? This second order question is what practition-
ers of deep learning typically care about. Differences in
architecture, hyperparameter tuning, data augmentation
etc. . . can indeed lead to important improvements in DNN
performance. Exactly why these tweaks and tricks gen-
erate better inductive bias is often not well understood
either, and is an important subject of investigation. Be-

cause the two questions are often conflated, leading to
confusion, we want to emphasise up front this paper will
focus on the basic first order overfitting conundrum shared
by all overparameterised DNNs. Understanding the basic
reasons for why DNNs don’t routinely overfit may provide
insight into (important) second order questions of how to
improve their performance further.
Learning Boolean functions: a model system

Inspired by a recent call to study model systems by Zde-
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Ordered Regime:

10 Layers, σ$= 1.0

Chaotic Regime:

10 Layers, σ$= 8.0

Bayesian picture and prior P(K) 

where is an indicator function (1 if its argument is true, and 0 otherwise). This is the probability

that the model expresses f upon random sampling of parameters over a parameter initialisation

distribution Ppar(✓), which is typically taken to have a simple form such as a (truncated) Gaussian.

In the following experiments, Ppar(✓) will be a truncated Gaussian, with weight variance �w (we take

the bias variance �b = 0). Therefore, we will typically parameterise P (f) = P (f ;�w).

P (f ;�w) can also be interpreted as the probability that the DNN expresses f upon initialisation
(from a truncated Gaussian with weight variance �w) before an optimisation process. It was shown
in (Valle-Pérez et al., 2018) that the exact form of Ppar(✓) (for reasonable choices) does not affect
P (f) much (at least for ReLU networks).
Definition 4.3 (Posterior distribution for Bayesian DNNs, PB(f |S)). We can interpret P (f ;�w) as

a prior. Bayesian inference then assigns a Bayesian posterior probability PB(f |S) to each f by

conditioning on the data according to Bayes rule

PB(f |S) :=
P (S|f)P (f)

P (S)
, (2)

where P (S) is also called the marginal likelihood or Bayesian evidence. Again, we will typically

parameterise this quantity as PB(f |S;�w).

It is the total probability of all functions compatible with the training set. For discrete functions,
P (S) =

P
f
P (S|f)P (f) =

P
f2C(S) P (f), with C(S) the set of all functions compatible with

the training set. For a fixed training set, all the variation in PB(f |S) for f 2 C(S) comes from the
prior P (f) of the untrained network since P (S) is constant. Thus, the bias in the prior is essentially

translated over to the posterior.

Another interesting quantity is the expectation of the posterior probability upon averaging over
training sets:

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i = tF (f,m)P (f) ⇡ P (f)e�m✏(f)

hP (S)i (3)

where the first approximate step (average of the ratio is the ratio of the averages) should be good, on
average, if P (S) is highly concentrated, and the second approximation should be fine if if ✏(f) is
small. We defined a average training factor for function f as

tF (f,m) =
(1� ✏(f))m

hP (S)i ⇡ e�m✏(f)

hP (S)i =
e�m✏G

hP (S)ie
�m(✏(f)�✏G) (4)

Finally, we will define POPT(f |S). Informally, this is the probability that a DNN trained by some
optimiser OPT to 100% training accuracy on a training set S will express a function f on a test set E.
Definition 4.4 (Distribution over functions for an SGD-trained DNN POPT(f |S)). The probability

that the optimiser OPT (e.g. SGD) finds a function f with zero error on S can be defined as:

POPT(f |S) :=
Z

[M(✓f ) = f ]POPT(✓f |✓i, S)P̃par(✓i)d✓id✓f (5)

where POPT(✓t|✓i, S) denotes the probability that OPT, initialised with parameters ✓i on a DNN,

converges to parameters ✓t when training is halted after the first epoch where zero classification

error is achieved on S. The initialisation distribution P̃par(✓i) is defined analogously to Ppar(✓)
in Equation (1), and will also typically be parameterised as P̃par(✓i;�w). Again, we will typically

parameterise this quantity as POPT (f |S;�w).

POPT(f |S) is, therefore, a measure of the ‘size’ of f ’s ‘basin of attraction’, which intuitively refers to
the set of initial parameters that converge to f upon training.
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(a) Prior P (f) versus rank. (b) Prior P (f) versus complexity (c) Generalisation error vs complexity

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

(g) Prior P (K) for uniform sampling (h) Prior P (K) for �w = 1 (i) Prior P (K) for �w = 8

FIG. 1: Priors over functions and over complexity (a) Prior P (f) for FCNs on n = 7 Boolean functions, ranked by
probability of individual functions, generated from 108 random samples of parameters ⇥ over a Gaussian Ppar(✓) with eight
standard deviation �w. For the tanh activation functions, the prior changes with increasing �w (b) Prior probability of a
function P (f) versus Lempel-Ziv complexity for the networks from (a). (c) Generalisation error versus Lempel-Ziv complexity of
the target function for two networks from (b) training to zero error on a training set S of size m = 64, with the error calculated
on the remaining |T | = 64 functions. The networks were trained with advSGD [12] on cross-entropy loss for 1000 random
initialisations. Error bars are one standard deviation. (d), (e), (f) Generalisation error versus learned function LZ complexity
scatterplots, for 1000 random initialisations for three target functions from subfigure (c). The dashed vertical line denotes the
target function complexity. The black cross represents the most common learned function. The histograms on top of the plots
show the posterior probability upon training as a function of complexity: PSGD(K|S) while the histograms on the side show the
posterior probability PSGD(✏|S) that a specific generalisation error ✏ is found. (g) shows the prior probability P (K) to obtain a
function of complexity K for uniform random sampling of 108 functions, while (h) and (i) show P (K) for the �w = 1 and
�w = 8 networks respectively. The large difference in these priors helps explain the large variation in DNN performance.

it solves the overparameterisation/large capacity prob-
lem), can we understand how to improve its performance
further? This second order question is what practition-
ers of deep learning typically care about. Differences in
architecture, hyperparameter tuning, data augmentation
etc. . . can indeed lead to important improvements in DNN
performance. Exactly why these tweaks and tricks gen-
erate better inductive bias is often not well understood
either, and is an important subject of investigation. Be-

cause the two questions are often conflated, leading to
confusion, we want to emphasise up front this paper will
focus on the basic first order overfitting conundrum shared
by all overparameterised DNNs. Understanding the basic
reasons for why DNNs don’t routinely overfit may provide
insight into (important) second order questions of how to
improve their performance further.
Learning Boolean functions: a model system

Inspired by a recent call to study model systems by Zde-
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CHECK FOR BUGS Very simple, if P (0) = 10� then ✏ ⇡ 2.30� and the mean generalisation error EG ⇡ 2.30�/M
Where we use GP-EP, and can’t trust �, we should use the �SGD – This turns out to all be super simple.

Fluctuations in P (f).
Define the functions with error epsilon as f

✏

i
(with i ranging from 1 to

�
M

✏

�
. When we do experiment 1, we see big

fluctuations away from this average for P (f ✏

i
) and the probability sum is dominated by outliers. Does this mean that

large fluctuations away from this binomial regime dominate, and so this invalidates the theory ? Well, the mean error:

h✏i =
MX

✏=0

✏

(M✏ )X

i

P (f ✏

i
) =

MX

✏=0

✓
M

✏

◆
hP (f ✏

i
)i

has all fluctuations in there, in principle. So that should still work. But a worry is: are we calculating hP (f ✏

i
)i

correctly? If rare outliers are important, that may mean doing samples over very large number of examples. (That’s
why we need to see the full spectrum of P (1) to get a feeling for this source of error

What is this telling us? Not so sure now. If we assume the exponential decay above, then the behaviour is
like that of a binomial process, but that doesn’t in the end tell us as much as I thought. So in fact experiment 2 is
useful after all. It is telling us the mean probabilities of functions with error ✏ for a specific test set, not what the
probabilities of getting ✏ errors are for a given function, when averaged over test sets.

hP (f |S)iS = P (f)

⌧
P (Si|f)
P (Si)

�

Si

⇡ P (f) (1� ✏(f))m

hP (S)i / P (K)(1� ✏(f))m (36)

OR

decoupling approximation
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Bayesian picture combining data and prior
4

(a) Target function LZ = 31.5 (b) Target function LZ = 66.5 (c) Target function LZ = 101.5

(d) Target function LZ = 31.5 (e) Target function LZ = 66.5 (f) Target function LZ = 101.5

FIG. 2: The interaction between the data and the functions when averaged over training sets of size m, is
captured by the mean Bayesian likelihood from Eq. (??). In (a), (b) and (c) we plot h(1� ✏(f))mi as a function of
Lempel-Ziv complexity K, where we take the average of the top 10 functions for each K, which captures the dominant
contribution. Note how the mean likelihood peaks around the K of the target, and how the likelihood rapidly drops off for
functions with larger error as m increases. In figs. (d), (e) and (f) we compare histograms of the probability of obtaining
functions of complexity K calculated by multiplying the Bayesian likelihood curves in Figs (a)–(c) by the prior P (K) shown in
Figure 1 (g) and (h), with the results obtained by SGD, and shown in Figure 1(d)–(f), which are repeated here at the bottom of
each plot. The blue histograms are from the �w = 1 DNN, and the orange and red histograms are from the �w = 8 DNN which
has less bias towards simple functions. Note how the Bayesian approximation captures the dominant trends in the behaviour of
the SGD trained networks for all three target functions.

To understand the large difference, we need another
key ingredient, namely how the number of functions vary
with complexity. Basic counting arguments for strings
suggest that the number of strings of a fixed length that
have complexity K scales exponentially as 2K [17]. If
one picks functions at random, then these arguments lead
to the expectation that the vast majority of functions
will have high complexity. The exponential growth of
the number of functions with complexity is captured in a
different more coarse-grained prior, namely the probability
P (K) that the DNN expresses a function of complexity
K. As can be seen in Figure 1 (g) & (h), P (K) differs
markedly between the two systems. For the network
with more standard parameters, P (K) is, to first order,
nearly flat. This behaviour follows from the fact that
the prior over functions scales as P (f) 2�K(f). This

AIT coding-theorem like scaling for individual functions
counterbalances the 2K growth in the number of functions,
leading to the observed nearly flat P (K). By contrast, for
the more artefactual �w = 8 system, what appears to be
a relatively small decrease Same point as earlier – 2 layer
system does not behave like a 10 layer system, see ?? for
the differences in the strength of inductive bias towards
simple functions turns out to have large consequences.
The prior can no longer cancel the exponential growth in
the number of functions with increasing complexity. In
other words, even though individual functions of lower
complexity have higher P (f), this DNN is much more
likely to throw up complex functions because there are
so many of them. These P (K) distributions help explain
the strong differences in the functions thrown up between
the two networks that we observe in Figure 1 (c)–(f).

light blue/light red = decoupling approximation, dark blue dark red = SGD
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(a) LZ(fT ) =31.5 (b) LZ(fT ) =45.5 (c) LZ(fT ) =66.5 (d) LZ(fT ) =94.5

(e) LZ(fT ) =101.5 (f) LZ(fT ) =119.0 (g) LZ(fT ) =129.5 (h) LZ(fT ) =143.5

FIG. 8: Top row h1� ✏(f)im versus LZ complexity. Middle row Approx Bayes using results from the top row. See
Appendix A 4 f for full experimental details. Bottom row AdvSGD trained with CE loss. See Appendix A 4 e for full
experimental details. LZ(fT ) denotes the LZ complexity of the target function, m the number of training examples,
and all other symbols have their usual meaning.

Bayesian picture combining data and prior

other target functions
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Appendix E: MSE loss on the boolean system

FIG. 12: Effects of training set size for the Bayes approximation, (top row), Gaussian Process (GP) approximation
(middle row) and NNs (bottom row). Adam with learning rate 5⇥ 10�4 and batch size 32 was used for the bottom
row, on a neural network with 10 layers and layer widths 64 were used. MSE loss function. The GP approximation
uses the correspondance between very wide layer DNNs and GPs ([40]). A DNN with all frozen layers (bar the final
classification layer) and width 16384 was trained with SGD with a MSE objective function (until zero loss, where the
correspondence with GPs becomes exact). The top row shows the exact form of Figures 2d to 2f. The bottom
row duplicates the plots found in Figure 2 in a larger format.

Full Bayesian/SGD comparison
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6 GENERALISATION IN MNIST AND CIFAR10

Using the critical sample ratio as a proxy for the complexity of the learned function we show that the
same connection between simplicity bias and generalisation error applies as with the Boolean system
in section 5.

1. Firstly we show show how CSR changes as we move between ordered and chaotic regions of
parameter space. These are a priori results.

(a) (b) (c)

(d) Uncorrupted (e) 25% corruption (f) 50% corruption

Figure 3: (a) MNIST test accuracy on a 10,000 image test set versus standard deviation of weights
upon initialisation for various depth networks. (b) CIFAR10 test accuracy on a 5,000 image test
set versus standard deviation of weights upon initialisation for various depth networks. In all cases,
the DNN was trained until 100% accuracy was achieved on the training set. (c) Probability versus
the critical sample ratio of 1000 MNIST images for randomly initialised networks of 10 layers with
200 neurons and weight standard deviation �w = 1, 2. Probabilities are estimated from a sample of
2⇥ 104 parameters. (d), (e) and (f) Generalisation error versus the critical sample ratio of the test set
for 1000 networks trained to 100% accuracy on 1000 MNIST images and tested on another 1000
images. In (d) the training labels were uncorrupted, in (e) 25% of the training labels were corrupted
and in (f) 50% of the training labels were corrupted.

(Perhaps take out the "Training set size = 1000" from images as it wrongly suggest these are trained
networks. Also need to correct for weird values of CSR when back on hydra.)

2. Secondly we show how the change in simplicity bias (measured by CSR) affects the test accuracy
of trained networks. We also show that the effect is universal across different training set sizes as this
is one of the components of the Bayesian model late on in the paper. (Should I plot these against
generalisation error rather than test accuracy for consistency throughout the paper.)

7 CONCLUSION
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= complexity
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Hold on: why should parameter 
function map predict DNN 
outcomes? 

What about SGD?

77

1) Why do DNNs generalise at all in 
the overparameterised regime?
Because the parameter-function map is 
highly biased towards simple solutions.

2) Given DNNs that generalise, can we 
further fine-tune the hyperparameters 
to improve generalisation?  (engineers).

Two kinds of questions about generalisation:

Is SGD a Bayesian sampler? Well, almost, C. Mingard, G.Valle-Pérez, J. Skalse, AAL, arxiv.org: 2006.15191 
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William of Ockham
1287-1347

Inductive bias and feature learning

1. Two questions about generalisation
2. Inductive bias towards simplicity
3. Bayesian function based picture of 

generalisation
4. Inductive bias and Zipf ’s law
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Function based picture and generalisation bounds3.3.5 Overview of bounds

(section 4.1)
Algorithm-independent

(section 4.2)
Algorithm-dependent

Based on uniform
convergence convergence

Based on non-uniform Other

D
at

a-
in

de
pe

nd
en

t

VC dimension
bound* (section
4.1.1)

SRM-based bounds†
(section 4.2.1.1) -

uniform stability
bounds‡ and
compression
bounds§ (section
4.3.1)

D
at

a-
de

pe
nd

en
t

Rademacher
complexity bound¶

(section 4.1.2)

data-dependent
SRM-based
bounds** (section
4.2.1.1)

margin bounds††
(4.2.1.2),
sensitivity-based
bounds‡‡ (section
4.2.1.4),
NTK-based
bounds§§ (section
4.2.1.3),
other PAC-Bayes
bounds¶¶ (section
4.2.2)

non-uniform
stability bounds***

(section 4.3.1),
marginal-likelihood
PAC-Bayes
bound† † †

(section 5)

Table 1: Classification of the main types of generalization bounds treated in this paper.
Roughly speaking, the number of assumptions grows going from left to right, and from top
to bottom. Note that, as we discussed in section 3.3.4, algorithm dependent bounds based on
non-uniform convergence are automatically data-dependent, which is why there is an empty
cell.
*Vapnik and Chervonenkis (1974); Blumer et al. (1989); Harvey et al. (2017)
†Vapnik (1995); McAllester (1998)
‡Bousquet and Elisseeff (2002); Hardt et al. (2016); Mou et al. (2018)
§Littlestone and Warmuth (1986); Brutzkus et al. (2018)
¶Bartlett and Mendelson (2002)
**Shawe-Taylor et al. (1998); Shawe-Taylor and Williamson (1997)
††Bartlett (1997, 1998); Bartlett et al. (2017); Neyshabur et al. (2018a); Golowich et al. (2018);
Neyshabur et al. (2018b); Barron and Klusowski (2019)
‡‡Neyshabur et al. (2017); Dziugaite and Roy (2017); Arora et al. (2018); Banerjee et al. (2020)
§§Arora et al. (2019); Cao and Gu (2019)
¶¶Zhou et al. (2018); Dziugaite and Roy (2018)
***Kuzborskij and Lampert (2017)
† † †Valle-Pérez et al. (2018)

12

Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

Big review paper on generalization bounds, includes 7 desiderata bounds should satisfy and a classification
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Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

A more commonly-used extension of the basic SRM bound considers dividing the (now
potentially uncountable) hypothesis class H into a countable set of (usually nested) subclasses
Hi, i 2 N, such that

S
iHi = H. The result is that for any distribution P over N (Shalev-

Shwartz and Ben-David, 2014), we have:

8D, PS⇠Dm

"
8i 2 N 8h 2 Hi such that ✏̂(h) = 0, ✏(h) 

ln 1
P (i) + fi(S) + ln 1

�

m

#
� 1� �

(12)
where fi(S) is any (potentially data-dependent) capacity for class Hi which guarantees
uniform convergence within Hi (for example, a bound on its VC dimension or Rademacher
complexity). Results of this form are proven in Shawe-Taylor et al. (1998) and Shalev-Shwartz
and Ben-David (2014).

We can also compute the expected value of the bound eq. (12), analogously to eq. (10). For
the numerator of the bound (ignoring the confidence term), we obtain H(Q̃0, P )+Ei⇠Q̃0 [fi(S)],
where Q̃0(i) ⌘ Ph⇠Q̃ [class(h) = i] and class(h) represents the index of the subclass Hclass(h)

to which h belongs. Analogously to before, the optimal value of P is given by Q̃0, and the
Bayesian posterior will in general not result in the optimal average value of the bound.

One shortcoming of eq. (12) is that the decomposition of H into Hi has to be defined a
priori, that is, it cannot depend on S. Shawe-Taylor et al. (1998) proposed an extension to
the SRM framework which addressed this shortcoming, and defined a potentially infinite
hierarchy of subclasses H1(S) ✓ H2(S) ✓ ... which could depend on the data S. This
framework includes as a special case the margin bounds we will see in section 4.2.1.2.

Shawe-Taylor and Williamson (1997) applied the data-dependent SRM framework to
obtain bounds for a parametrized model, where the capacity was related to the volume in
parameter space of a sphere contained within the set of parameters producing zero training
error. This work inspired the development of the first PAC-Bayes bounds in McAllester
(1998)10. These bounds apply for stochastic learning algorithms, and bound the expected
value of the generalization error under the posterior Q(h|S), uniformly over posteriors. The
standard form of the general PAC Bayes bound was proven by Maurer (2004) and states, for
any distribution P over H,

8D, PS⇠Dm

"
8Q KL(Eh⇠Q[✏(h)],Eh⇠Q[✏̂(h)]) 

KL(Q||P ) + ln 1
� + ln (2m)

m� 1

#
� 1� �

(13)
where KL(Q||P ) is the KL-divergence between Q and P . On the left hand side we use the
standard abuse of notation to define KL(a, b) ⌘ a ln (a/b) + (1� a) ln ((1� a)/(1� b)), for
a, b 2 [0, 1].

This bound can be seen to generalize the SRM with data-dependent hierarchies of Shawe-
Taylor et al. (1998), where instead of “hard” subdivisions of H into Hi, we consider all
possible distributions Q on H. KL(Q,P ) is analogous to ln 1

P (i) in eq. (12) in that it very
roughly measures how much of the total probability mass of P is in the high probability

10. Although Shawe-Taylor and Williamson (1997) is often cited as a precursor to PAC-Bayes (Shawe-Taylor,

2019), it offers a distinct analysis (for example, it gives deterministic bounds rather than bounds on

expected error), which as far as the authors know hasn’t been shown to necessarily give stronger or

weaker bounds than PAC-Bayes, and hasn’t been applied to neural networks.

19

David McAllester COLT (1998)

We prove that function based bounds will (in principle) always be better than parameter based PAC-Bayes bounds  

� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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Generalization bounds for deep learning Guillermo Valle-Pérez and AAL, arxiv:arXiv:2012.04115

learning rate limit (Jacot et al., 2018), which seems to work well for finite-width but wide
DNNs (Lee et al., 2019). They apply this to MNIST by estimating the NTK eigenspectrum
on a sample of MNIST, and then training the DNN on smaller samples. Their predicted
generalization error closely follows the observed error of the SGD-trained DNN. As far as
the authors are aware this is one of the most accurate predictions of the generalization error
of DNNs based on well-established theory.

One of the limitations of the analysis in Bordelon et al. (2020) is that it relies on knowing
what the data distribution is, and in particular the eigenvalues of the NTK kernel, and the
eigenspectrum of the target function (with respect to the eigen basis of the NTK kernel). This
can be estimated by using a sufficiently large sample of the data, but it is not discussed in
Bordelon et al. (2020) how big the sample needs to be for the estimate to be accurate. They
use a sample larger than the training set, which therefore makes this predictor fall outside
the requirements of the kinds of predictons we have been considering (which only depend
on S). However, the approach offers an analytical theory of generalization which can help
with interpretability and gaining understanding of which properties of a DNN architecture
lead to generalization for a particular dataset. The other limitation of the work in Bordelon
et al. (2020) is that the analysis only applies for MSE loss, which is not commonly used for
classification (though the training with the two losses often results in DNNs with similar
learned functions (Mingard et al., 2020)).

5 Marginal-likelihood PAC-Bayesian generalization error bound

In the previous section, we saw that algorithm-independent or data-independent bounds are
clearly insufficient to explain the generalization performance of DNNs because the hypothesis
class of DNNs is too expressive, and the generalization strongly depends on the dataset,
respectively. Furthermore, the main approaches for algorithm-dependent bounds are based on
non-uniform convergence, which has been shown to have fundamental limitations in its ability
to predict generalization in SGD-trained DNNs for some datasets (Nagarajan and Kolter,
2019). Although there are ways around this limitation (see the discussion in section 3.3.4), it
suggests that looking at other approaches to obtain generalization bounds may be promising.
Non-uniform stability bounds offer an interesting alternative to non-uniform convergence,
but their empirical success so far is still limited.

Here we present a new deterministic realizable PAC-Bayes bound which applies to a
DNN trained using Bayesian inference, with high probability over the posterior. We work
in the same set up as Valle-Pérez et al. (2018) and McAllester (1998). We consider binary
classification, and a space of functions or hypotheses with codomain {0, 1}. We consider a
“prior” P over the hypothesis space H, and an algorithm which samples hypotheses according
to the Bayesian posterior, with 0� 1 likelihood. To recall, we define generalization error as
the probability of misclassification upon a new sample ✏(h) = Px⇠D[h(x) 6= t(x)], where t is
the target function. In appendix A.1, we prove the following theorem:

Theorem 5.1. (marginal-likelihood PAC-Bayes bound)
For any distribution P on any hypothesis space H and any realizable distribution D on

a space of instances we have, for 0 < �  1, and 0 < �  1, that with probability at least
1� � over the choice of sample S of m instances, that with probability at least 1� � over the
choice of h:

30� ln (1� ✏(h)) <
ln 1

P (C(S))+lnm+ln 1
�+ln 1

�

m�1

where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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1) Marginal-likelihood P(c(S)) = weighted sum over functions (hypotheses) h consistent with training set S.

2) P(c(S)) can also be interpreted as the probability of obtaining zero error on S upon random sampling of parameters.

3) P(c(S)) is a natural measure of the “fit” of the inductive bias of the network with the data. 

4) Larger P(c(S)) means smaller PAC-Bayes generalisation bound. 
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(a) for a 4 hidden layers convolutional network (b) for a 1 hidden layer fully connected network

Figure 3: Mean generalization error and corresponding PAC-Bayes bound versus percentage of
label corruption, for three datasets and a training set of size 10000. Training set error is 0 in all
experiments. Note that the bounds follow the same trends as the true generalization errors. The
empirical errors are averaged over 8 initializations. The Gaussian process parameters were �w =
1.0, �b = 1.0 for the CNN and �w = 10.0, �b = 10.0 for the FC. Insets show the marginal
likelihood of the data as computed by the Gaussian process approximation (in natural log scale),
versus the label corruption.

The evidence is based on comparing SGD-trained network with a Gaussian process approximation
(Lee et al. (2017)), as well as showing that this approximation is similar to Bayesian sampling via
MCMC methods (Matthews et al. (2018)).

We performed experiments showing direct evidence that the probability with which two variants of
SGD find functions is close to the probability of obtaining the function by uniform sampling of pa-
rameters in the zero-error region. Due to computational limitations, we consider the neural network
from Section 4. We are interested in the probability of finding individual functions consistent with
the training set, by two methods:(1 Training the neural network with variants of SGD8; in particular,
advSGD and Adam (described in Appendix A) (2 Bayesian inference using the Gaussian process
corresponding to the neural network architecture. This approximates the behavior of sampling pa-
rameters close to uniformly in the zero-error region (i.i.d. Gaussian prior to be precise).

We estimated the probability of finding individual functions, averaged over training sets, for these
two methods (see Appendix D for the details), when learning a target Boolean function of LZ
complexity84.0. In Figures 4 and 8, we plot this average probability, for an SGD-like algorithm, and
for the approximate Bayesian inference. We find that there is close agreement (specially taking into
account that the EP approximation we use appears to overestimate probabilities, see Appendix B),
although with some scatter (the source of which is hard to discern, given that the SGD probabilities
have sampling error).

These results are promising evidence that SGD may behave similarly to uniform sampling of pa-
rameters (within zero-error region). However, this is still a question that needs much further work.
We discuss in Appendix C some potential evidence for SGD sometimes diverging from Bayesian
parameter sampling.

8 CONCLUSION AND FUTURE WORK

In this paper, we present an argument that we believe offers a first-order explanation of generalization
in highly overparametrized DNNs. First, PAC-Bayes shows how priors which are sufficiently biased
towards the true distribution can result in good generalization for highly expressive models, e.g. even
if there are many more parameters than data points. Second, the huge bias towards simple functions

8These methods were chosen because other methods we tried, including plain SGD, didn’t converge to zero
error in this task

9
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� ln (1� ✏(h)) <
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where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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Figure 4: Comparing different architectures. Learning curves for the test error and
the PAC-Bayes bounds for representative architectures and different datasets. Solid and
dashed line show, respectively, the empirical test error and the PAC-Bayes bounds. The
architectures are FCN, Resnet50, Densenet121, and MobileNetv2. The DNNs were trained
using Adam with batch size 32 to 0 training error. Different architectures show similar
learning curve power law exponents, which are matched well by the PAC-Bayes bound. Note
that we used slightly different y-axis ranges for each dataset, to aid the distinction of different
architectures. The ordering of the PAC-Bayes bound also agrees reasonably well with the
ordering of the true learning curves, when comparing architectures (Desideratum D.3).

The learning curves we observe in the figs above agree with the previous empirical
observations of power law behaviour in learning curves for DNNs, with only a few exceptions,
where we observe a deviation from power law behaviour. In particular the learning curve for
CIFAR10 for batch 32 appears to deviate from a power law on this range of m. However for
batch 256 it shows cleaner power law behaviour (see fig. 12, fig. 13, fig. 14 in appendix E)
that agrees better with the PAC-Bayes bound exponent.

In fig. 8 and fig. 9, shown in appendix D, we present the learning curves for several
variants of ResNets and DenseNets, respectively. Within each family of similar architectures,
the learning curve is even more similar. The PAC-Bayes bound matches the behaviour of the
true error rather closely for the entire range of architectures and datasets used. In particular,
the power law exponent of the PAC-Bayes bound is close to that of the true learning curves
for these 14 different architectures, just as was found in fig. 3 for three representative ones,
showing that our generalization error theory is robust and widely applicable.
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where h is chosen according to the posterior distribution Q(h) = P (h)P
h2C(S) P (h) , C(S) is the

set of hypotheses in H consistent with the sample S, and where P (C(S)) =
P

h2C(S) P (h)

The proof is presented in appendix A.1. It closely follows that of the original PAC-
Bayesian theorem by McAllister, with the main technical step relying on the quantifier
reversal lemma of McAllester (1998). Note that the bound is essentially the same as that
of Langford and Seeger (2001), except for the fact that it holds in probability and it adds
an extra term dependent on the confidence parameter �, which is usually negligible, but
may be important when considering the effect of optimizer choice. The quantity P (C(S))
corresponds to the marginal likelihood, or Bayesian evidence of the data S, and we will also
denote it by P (S), to simplify notation.

In Valle-Pérez et al. (2018), the authors interpreted Q(h) as approximating the probability
by which the stochastic algorithm (e.g. SGD) outputs hypothesis h after training. The
preceding bound relaxes this assumption, because it shows that in some sense, the bound
holds for “almost all” of the zero-error region of parameter space. More precisely, it holds with
high probability over the posterior. This suggests that SGD may not need to approximate
the Bayesian inference as closely, for this bound to be useful. Nevertheless, Mingard et al.
(2020) gave empirical results showing that, for DNNs, the distribution over functions that
SGD samples from, approximates the Bayesian posterior rather closely. A fully rigorous
generalization error bound for DNNs would need further analysis of SGD dynamics, but we
believe these theoretical and empirical results strongly suggest that the PAC-Bayes bound
should be applicable to SGD-trained DNNs.

Because it applies to the Bayesian posterior only, the bound in theorem 5.1 does not
apply universally over a large family of posteriors, like standard deterministic PAC-Bayes
bounds do, which can be shown to sometimes give loose bounds (Nagarajan and Kolter, 2019).
Furthermore, as we will show in section 6.2, the bound is in a certain sense asymptotically
optimal in the limit of large training set size.

We expect our bound to give significantly tighter results than previous PAC-Bayes bounds
applied to DNNs, because rather than working with parameters, our bound works directly
with posteriors and priors in function space. Since the parameter-function map (Valle-Pérez
et al., 2018) of DNNs is many-to-one, with a lot of parameter-redundancy, it is not hard to
construct situations where KL(Qpar||Ppar) between a parameter-space posterior Qpar and
prior Ppar is high, but KL(Q||P ) between the induced posterior and prior in function-space
is low. In fact, in appendix A.3, we show that the following inequality holds

KL(Q||P )  KL(Qpar||Ppar) (19)

which implies that it is always better (or at least not worse) to consider PAC-Bayes bounds
in function space for parametrized models, if possible. Furthermore, in section 7, we will
empirically verify that our bound gives good predictions for SGD-trained DNNs, and satisfies
most of our desiderata for a generalization error bound. Thus our empirical results corroborate
our expectation of better agreement above.
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there is a good correlation between the estimate of the exponent and the empirical exponent.
The absolute value of the estimated exponent in fig. 5a does show deviation from the true
value, which is probably due to systematic errors in the EP approximation used to compute
the marginal likelihood (this was discussed and empirically investigated in Mingard et al.
(2020)). It should be kept in mind that power law exponents can be sensitive to the protocol
used to measure them (Clauset et al., 2009; Stumpf and Porter, 2012), so the exact values
we find in fig. 5 may not be as meaningful as the correlation between the empirical values
and those from the bound.

7.3 Error versus architecture (Desideratum D.3)

Desideratum D.3 requires that the bound correlates with the error when changing the
architecture. We explore this in two ways, by varying certain common architecture hyper-
parameters (pooling type and depth), and by comparing several state-of-the-art (SOTA)
architectures to each other. In fig. 6a, we vary the pooling type, and find that the bound
correctly predicts that the error is higher for max pooling than avg pooling, and both are
lower than no pooling, on this particular dataset. In fig. 6b, we vary the number of hidden
layers of a CNN trained on MNIST, and find that the bound closely tracks the change in
generalization error with numbers of layers.

(a) (b)

Figure 6: PAC-Bayes bound and generalization error versus different architecture

hyperparameters. (a) Error versus pooling type, for a CNN trained on a sample of 1k
images from KMNIST. (b) Error versus number of layers for a CNN trained on a sample of
size 10k from MNIST. Training set error is 0 in all experiments. We used SGD with batch
32 for both of these experiments.

To explore more complex changes to the architecture, we plot in fig. 7 the bound and
error against each other for five datasets, for a set of state-of-the-art architectures, including
several resnets and densenet variants (see appendix B.3 for architecture details), at a fixed
training set size of 15K. The results display a clear correlation, showing that our PAC-Bayes
bound can help explain why some architectures generalize better than others.
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