# Stochastic gradient descent and Random Matrix Theory

**Gert Aarts** 



*Physics for AI,* Oxford, March 2025

# Stochastic gradient descent and Random Matrix Theory

**Gert Aarts** 

with Chanju Park and Biagio Lucini

PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

and Ouraman Hajizadeh

2411.13512 [cond-mat.dis-nn]



NeurIPS 2024 workshop *ML and the Physical Sciences* 

*Physics for AI,* Oxford, March 2025

# Random Matrix Theory (RMT)

developed by Wigner and Dyson to describe nuclear spectra (1959-1962)

o universal features: level spacing, Coulomb repulsion, Wigner surmise, fluctuations

non-universal behaviour: spectral density

example:

• successfully applied in QCD to describe Dirac operator

JJM Verbaarschot and T Wettig, *Random matrix theory and chiral symmetry in QCD* Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [arXiv:hep-ph/0003017 [hep-ph]].



# RMT and machine learning

- Input layer Multiple hidden layers Output layer
- different context: machine learning and weight matrix dynamics
- neural networks: layers of nodes, connected by weight matrices
- weight matrices are updated using e.g. stochastic gradient descent (SGD)
- $\circ$  stochastic matrix dynamics  $\rightarrow$  Dyson Brownian motion  $\rightarrow$  RMT features
- aim: further understanding of learning by characterising weight matrix dynamics
- identify universal behaviour and limitations of SGD during and after training

#### Outline

- o some general comments on stochastic weight matrix updates
- o connection to Dyson Brownian motion and stochastic Coulomb gas
- universal properties of stationary distribution
- application in Restricted Boltzmann Machine (RBM) and Transformer (nano-GPT)
- summary and outlook



# Stochastic weight matrix dynamics

- $\,\circ\,\,$  consider some  $M \times N\,\,$  weight matrix W
- update (e.g. stochastic gradient descent):  $W \to W' = W + \delta W$  with  $\delta W = -\alpha \frac{\delta \mathcal{L}}{\delta W}$
- $\,\circ\,\,$  obtained from loss function  ${\cal L}[W]$  , learning rate lpha
- $\delta W$  is estimated using a batch  $\mathcal{B}$  with batch size  $|\mathcal{B}|$ :  $\delta W_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{b \in \mathcal{B}} \delta W_b$
- fluctuations controlled by finite batch size (CLT):  $\frac{1}{|\mathcal{B}|} \operatorname{Var}(\delta W)$

#### Stochastic weight matrix dynamics

 $\,\circ\,\,$  stochastic update  $\,\,W \rightarrow W' = W + \delta W\,\,$  becomes

$$\delta W = \delta W_{\mathcal{B}} + \frac{1}{\sqrt{|\mathcal{B}|}} \sqrt{\operatorname{Var}(\delta W)} \eta$$

• or in terms of the gradient of the loss function:

$$W' = W - \alpha \left(\frac{\delta \mathcal{L}}{\delta W}\right)_{\mathcal{B}} + \frac{\alpha}{\sqrt{|\mathcal{B}|}} \sqrt{\operatorname{Var}\left(\frac{\delta \mathcal{L}}{\delta W}\right)} \eta \qquad \eta_{ij} \sim \mathcal{N}(0,$$

#### From rectangular to symmetric matrices

• W is  $M \times N$  matrix: singular value decomposition:  $W = U \Xi V^T$  $U U^T = \mathbb{1}$   $V V^T = \mathbb{1}$ 

○ singular values:  $\xi_i$  (i = 1...N) [take  $N \le M$  without loss of generality]

o introduce symmetric semi-positive combination:  $X = W^T W = V D V^T$ 

 $\circ$  and focus on the singular/eigenvalues (invariant under left/right rotations on W):

$$D = \Xi^T \Xi = \operatorname{diag}\left(\xi_1^2, \dots, \xi_N^2\right) = \operatorname{diag}\left(x_1, \dots, x_N\right)$$

• stochastic dynamics:  $X \to X' = X + \delta X_{\mathcal{B}} + \frac{1}{\sqrt{|\mathcal{B}|}} \sqrt{\operatorname{Var}(\delta X)} \eta$ 

#### Initialisation: Marchenko-Pastur distribution

o if initial weight matrix  $W_{ij} \sim \mathcal{N}(0, \sigma^2)$  then X follows Marchenko-Pastur distribution

$$P_{\rm MP}(x) = \frac{1}{2\pi\sigma^2 Mrx} \sqrt{(x_+ - x)(x - x_-)} \qquad x_- < x < x_+ \qquad r = N/M \le 1 \quad x_\pm = M\sigma^2 \left(1 \pm \sqrt{r}\right)^2$$

how to choose  $\sigma^2$ : distribution should depend on r only, safe to take large N, M limit

✓ spectrum is bounded for all r (relevant for RBMs below) :  $\sigma^2 = 1/M$ :  $N \le M$ 

$$P_{\rm MP}(x) = \frac{1}{2\pi r x} \sqrt{(x_+ - x)(x - x_-)} \qquad 0 \le x_- \le x \le x_+ \le 4 \qquad x_\pm = \left(1 \pm \sqrt{r}\right)^2$$

Stochastic matrix dynamics: Dyson Brownian motion and the stochastic Coulomb gas

- $\,\circ\,\,$  framework to consider stochastic matrix dynamics for symmetric matrix X
- Dyson Brownian motion (in continuous time for now, see below):

$$\frac{dX_{ij}}{dt} = K_{ij}(X) + \sqrt{A_{ij}}\eta_{ij}$$

eigenvalues then evolve according to

$$egin{aligned} & rac{dx_i}{dt} = K_i(x_i) + \sum_{j 
eq i} rac{g_i^2}{x_i - x_j} + \sqrt{2}g_i\eta_i \ & \equiv K_i^{( ext{eff})}(x_i) + \sqrt{2}g_i\eta_i \ & ext{where } \sqrt{A_{ii}} = \sqrt{2}g_i \end{aligned}$$

#### Dyson Brownian motion, stochastic Coulomb gas

• eigenvalues dynamics: 
$$rac{dx_i}{dt} = K_i(x_i) + \sum_{j 
eq i} rac{g_i^2}{x_i - x_j} + \sqrt{2}g_i\eta_i$$

- can be derived using 2nd order perturbation theory
- Coulomb term: eigenvalue repulsion [Wigner, Dyson 1959-1962, for nuclear spectra]
- Fokker-Planck equation (FPE) for distribution of eigenvalues:

$$\partial_t P(\{x_i\}, t) = \sum_{i=1}^N \partial_{x_i} \left[ \left( g_i^2 \partial_{x_i} - K_i^{(\text{eff})}(x_i) \right) \right] P(\{x_i\}, t)$$

#### Dyson Brownian motion, stochastic Coulomb gas

• FPE: 
$$\partial_t P(\{x_i\}, t) = \sum_{i=1}^N \partial_{x_i} \left[ \left( g_i^2 \partial_{x_i} - K_i^{(\text{eff})}(x_i) \right) \right] P(\{x_i\}, t)$$
  
• stationary distribution:  $P_s(\{x_i\}) = \frac{1}{Z} \prod_{i < j} |x_i - x_j| e^{-\sum_i V_i(x_i)/g_i^2}$   
• with partition function:  $Z = \int dx_1 \dots dx_N P_s(\{x_i\})$ 

o and provided drift can be derived from a potential  $K_i(x_i) = -\frac{dV_i(x_i)}{dx_i}$ 

known as Coulomb gas, describes universal features of random matrices

#### Back to weight matrix dynamics

• stochastic dynamics 
$$X \to X' = X + \delta X_{\mathcal{B}} + \frac{1}{\sqrt{|\mathcal{B}|}} \sqrt{\operatorname{Var}(\delta X)} \eta$$

• what can be carried over from Dyson's matrix dynamics? implications? universality?

$$\circ$$
 eigenvalue equation:  $x_i \to x_i' = x_i + \delta x_i + \sum_{j \neq i} rac{g_i^2}{x_i - x_j} + \sqrt{2}g_i\eta_i$ 

• make explicit learning rate and batch size dependence

$$\delta x_i = \alpha K_i$$
  $g_i = \frac{\alpha}{\sqrt{|\mathcal{B}|}} \tilde{g}_i$   $\tilde{g}_i \sim \operatorname{Var}(\delta \mathcal{L}/\delta W)|_{ii}$ 

#### Back to weight matrix dynamics

$$\circ$$
 eigenvalue dynamics:  $x_i o x_i' = x_i + \delta x_i + \sum_{j 
eq i} rac{g_i^2}{x_i - x_j} + \sqrt{2} g_i \eta_i$ 

insert learning rate and batch size dependence:

$$x_i \to x'_i = x_i + \alpha K_i + \frac{\alpha^2}{|\mathcal{B}|} \sum_{j \neq i} \frac{\tilde{g}_i^2}{x_i - x_j} + \frac{\alpha}{\sqrt{|\mathcal{B}|}} \sqrt{2} \tilde{g}_i \eta_i$$

no usual scaling of drift and noise with learning rate (Ito calculus:  $\epsilon$ ,  $\sqrt{\epsilon}$ ):
 no obvious continuous time limit (SDE), only in some weak sense

Q Li, C Tai and W E [1511.06251] S Yaida [1810.00004]

known issue: from SGD to SDE but is in fact blessing (see below)

$$x_i \to x_i' = x_i + \alpha K_i + \frac{\alpha^2}{|\mathcal{B}|} \sum_{j \neq i} \frac{\tilde{g}_i^2}{x_i - x_j} + \frac{\alpha}{\sqrt{|\mathcal{B}|}} \sqrt{2} \tilde{g}_i \eta_i$$

15

# Stationary distribution

- o distribution for fixed  $lpha, |\mathcal{B}|$  :  $P_s(\{x_i\}) = rac{1}{Z} \prod_{i < j} |x_i x_j| e^{-\sum_i V_i(x_i)/g_i^2}$
- make explicit dependence on learning rate and batch size

$$g_i = rac{lpha}{\sqrt{|\mathcal{B}|}} ilde{g}_i \qquad \qquad V_i(x_i) = lpha ilde{V}_i(x_i) \qquad \qquad rac{V_i(x_i)}{g_i^2} = rac{1}{lpha/|\mathcal{B}|} rac{ ilde{V}_i(x_i)}{ ilde{g}_i^2}$$

• if drift vanishes at  $x_i = x_i^s$ , expand potential  $\tilde{V}_i(x_i) = \tilde{V}_i(x_i^s) + \frac{1}{2}\Omega_i(x_i - x_i^s)^2 + \dots$ 

• exponential is Gaussian with variance  $\sigma_i^2 = (\alpha/|\mathcal{B}|) (\tilde{g}_i^2/\Omega_i)$ universal scaling with model-dependent learning rate and batch size factor

#### Linear scaling relation

 $\circ$  dependence on  $\alpha/|\mathcal{B}|$  in training has been observed before, empirically

 ✓ P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al., *Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour* [1706.02677]
 ✓ S.L. Smith and Q.V. Le,

A Bayesian Perspective on Generalization and Stochastic Gradient Descent [1710.06451]

✓ S.L. Smith, P. Kindermans and Q.V. Le,

Don't Decay the Learning Rate, Increase the Batch Size [1711.00489]

o finds a natural place in the framework of Dyson Brownian motion and Coulomb gas

# Applications and implications

o so far, the derivation is general: prediction of eigenvalue distribution after learning

- o apply to actual ML models to observe universal features and support derivation
- teacher-student model
- Gaussian Restricted Boltzmann Machine
- Transformer

builds on previous analysis of RBM: GA, B Lucini, C Park, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]] current analysis: PRE 111 (2025) 1, 015303 [2407.16427 [cond-mat.dis-nn]]

GA, O Hajizadeh, B Lucini, C Park 2411.13512 [cond-mat.dis-nn]

# Restricted Boltzmann Machine: generative network



- energy-based method
- probability distribution
- binary or continuous d.o.f.

$$p(\phi,h) = rac{1}{Z} e^{-S(\phi,h)}$$

$$Z = \int D\phi Dh \, e^{-S(\phi,h)} \, \, {}_{\rm 18}$$



#### Scalar field RBM

o distribution: 
$$p(\phi,h) = \frac{1}{Z}e^{-S(\phi,h)}$$
  $S(\phi,h) = \frac{1}{2}\mu^2\phi^T\phi + \frac{1}{2\sigma_h^2}(h-\eta)^T(h-\eta) - \phi^TWh$ 

- $\circ M imes N = N_v imes N_h$  weight matrix W
- induced distribution on visible layer  $p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2}\phi^T K \phi + J^T \phi\right)$
- $\circ \quad \text{kernel} \quad K = \mu^2 \mathbbm{1} \sigma_h^2 W W^T = \mu^2 \mathbbm{1} \sigma_h^2 U \Xi \Xi^T U^T = U \left[ \mu^2 \mathbbm{1} \sigma_h^2 \Xi \Xi^T \right] U^T \equiv U D_K U^T$

• eigenvalues 
$$D_K = \operatorname{diag}\left(\underbrace{\mu^2 - \sigma_h^2 \xi_1^2, \mu^2 - \sigma_h^2 \xi_2^2, \dots, \mu^2 - \sigma_h^2 \xi_N^2}_{N}, \underbrace{\mu^2, \dots, \mu^2}_{M-N}\right)$$

#### Scalar field RBM as a lattice field theory

• treat RBM as a lattice field theory with bi-linear quadratic action

$$S(\phi, h) = \sum_{i} \frac{1}{2} \mu_{i}^{2} \phi_{i}^{2} + \sum_{a} \frac{1}{2\sigma^{2}} (h_{a} - \eta_{a})^{2} - \sum_{i,a} \phi_{i} w_{ia} h_{a}$$

induced distribution on visible layer

$$p(\phi) = \int Dh \, p(\phi, h) = \frac{1}{Z} \exp\left(-\frac{1}{2} \sum_{i,j} \phi_i K_{ij} \phi_j + \sum_i J_i \phi_i\right)$$

all information is stored in quadratic operator, with spectrum

$$D_{K} = \operatorname{diag}\left(\underbrace{\mu^{2} - \sigma_{h}^{2}\xi_{1}^{2}, \mu^{2} - \sigma_{h}^{2}\xi_{2}^{2}, \dots, \mu^{2} - \sigma_{h}^{2}\xi_{N}^{2}}_{N}, \underbrace{\mu^{2}, \dots, \mu^{2}}_{M-N}\right)$$

#### Scalar field RBM as an ultraviolet regulator

○ spectrum

$$D_{K} = \operatorname{diag}\left(\underbrace{\mu^{2} - \sigma_{h}^{2}\xi_{1}^{2}, \mu^{2} - \sigma_{h}^{2}\xi_{2}^{2}, \dots, \mu^{2} - \sigma_{h}^{2}\xi_{N_{h}}^{2}}_{N_{h}}, \underbrace{\mu^{2}, \dots, \mu^{2}}_{N_{v} - N_{h}}\right)$$

- $\circ$  what if  $N_h < N_v$  ? not all eigenvalues can be reproduced
- $_{\odot}$  role of hyperparameter  $\mu^2$  ? if chosen too low, not all eigenvalues can be reproduced

$$lacksim$$
 both  $N_h$  and  $\mu^2$  act as ultraviolet regulators

GA, B Lucini, C Park, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]

# RBM as ultraviolet regulator



- apply to MNIST data set (28 x 28 images)
- compute spectrum of two-point
   correlator  $K_{ij}^{-1} = \langle \phi_i \phi_j 
  angle_{
  m data}$
- $\circ$  inverse spectrum  $1/\kappa$
- infrared safe
- ultraviolet divergent

| C              | infrared    | <br>6.572   |
|----------------|-------------|-------------|
| 0              |             | <br>4.806   |
|                |             | <br>4.178   |
|                |             | <br>3.650   |
| , <del>ک</del> |             | <br>3.297   |
| -              |             | <br>2.920 - |
| -              |             | <br>2.216   |
| 2              |             | <br>1.953   |
|                |             | <br>1.871   |
|                |             | <br>1.596   |
| 0              | ultraviolet | 1.428       |

#### 784 eigenvalues



# MNIST with fixed RBM mass

- $\circ \ N_v = N_h = 784$
- $\circ~$  fixed RBM mass  $\mu^2=100$
- spectrum regulated
- infrared modes learned approximately correctly (see below)



# MNIST with $N_h \leq N_v$

what is the effect of including incomplete spectrum?

| 5 | 0 | Ч | 1 | 9 | 2 | ١ | 3 |
|---|---|---|---|---|---|---|---|
| 1 | 4 | 3 | ک | 3 | 6 | 1 | 7 |
| 9 | 8 | 6 | 9 | T | 0 | 9 | 1 |
| ユ | г | 4 | 3 | 2 | 7 | N | 8 |

| 5 | 0 | Ч | 1 | 9 | 2 | ١ | 3 |
|---|---|---|---|---|---|---|---|
| 1 | 4 | 3 | ک | 3 | 6 | 1 | 7 |
| Υ | 8 | 6 | 9 | T | 0 | 9 | 1 |
| ユ | г | Ч | 3 | 2 | 7 | Ы | 8 |



removal of

ultraviolet modes

affects

generative power

(a)  $N_h = 784$ 

| 5        | 0 | H | 1 | 9 | 3 | 1 | З |
|----------|---|---|---|---|---|---|---|
| 1        | 4 | 3 | Ś | 3 | 6 | Ŧ | 7 |
| Э        | 8 | 6 | 9 | ч | 0 | 9 | 1 |
| <u>t</u> | З | 4 | ß | 2 | 7 | 3 | 8 |

(d)  $N_h = 36$ 

(b)  $N_h = 225$ 

(c)  $N_h = 64$ 

| 53  | 0 | q | 1             | 9 | 3 | 4 | З |
|-----|---|---|---------------|---|---|---|---|
| 3   | 9 | 3 | $\mathcal{G}$ | 3 | 6 | 4 | 7 |
| 3   | 8 | 6 | 9             | 5 | 0 | 9 | 1 |
| (2) | 3 | 4 | G             | 3 | 4 | 3 | 8 |

(e)  $N_h = 16$ 



(f)  $N_h = 4$ 

# Back to Dyson Brownian motion

- weight matrix is updated using persistent contrastive divergence (PCD)
- o maximise likelihood/minimise KL divergence

$$\frac{\delta \mathcal{L}}{\delta W_{ia}} = \sigma_h^2 \big( \langle \phi_i \phi_j \rangle_{\text{target}} - \langle \phi_i \phi_j \rangle_{\text{model}} \big) W_{ja}$$

- o denote eigenvalues of  $X = W^T W$  as  $x_i$
- PCD is stochastic:

$$x_i \to x'_i = x_i + \alpha K_i + \frac{\alpha^2}{|\mathcal{B}|} \sum_{j \neq i} \frac{\tilde{g}_i^2}{x_i - x_j} + \frac{\alpha}{\sqrt{|\mathcal{B}|}} \sqrt{2} \tilde{g}_i \eta_i$$

 $N_h$  nodes

 $N_{\rm v}$  nodes

W

#### Back to Dyson Brownian motion

o maximise likelihood/minimise KL divergence

$$\frac{\delta \mathcal{L}}{\delta W_{ia}} = \sigma_h^2 \big( \langle \phi_i \phi_j \rangle_{\text{target}} - \langle \phi_i \phi_j \rangle_{\text{model}} \big) W_{ja}$$

- $\circ$  denote target distribution has eigenvalues with  $\kappa_i$
- drift in instantaneous eigen-basis:  $K_i(x_i) = \left(\frac{1}{\kappa_i} \frac{1}{\mu^2 x_i}\right) x_i$
- $\circ$  fixed point of drift:  $x_i^s = \mu^2 \kappa_i$  , spectrum learnt correctly
- o where can we observe the effects of RMT?

# Scalar field RBM

- o implement for simple target distribution: scalar field in LFT in 1 dimension
- spectrum is free dispersion relation:  $\kappa_k = m^2 + p_{\text{lat},k}^2 = m^2 + 2 2\cos\left(\frac{2\pi k}{N_v}\right)$
- each mode is doubly degenerate, except lowest and highest one
- example for 10 modes
   degenerate modes split for clarity
   4

# **RBM** evolution

weight matrix updates using persistent contrastive divergence with mini-batches



initial Marchenko-Pastur distribution

towards target spectrum

# RBM evolution and RMT universality

- weight matrix updates using persistent contrastive divergence with mini-batches
- no sharp lines, distributions around target spectrum
- test predictions from RMT:
  - induced Coulomb term and eigenvalue repulsion (universal)
  - potential from drift (non-universal)



#### Universal RMT predictions

consider two degenerate modes only: Coulomb gas description

$$Z = \frac{1}{N_0} \int dx_1 dx_2 |x_1 - x_2| e^{-V(x_1, x_2)} \qquad V(x_1, x_2) = \frac{1}{2\sigma^2} \left[ (x_1 - \kappa)^2 + (x_2 - \kappa)^2 \right]$$

 $\circ$  eigenvalues  $x_1, x_2$  cannot both be equal to  $\kappa$  due to Coulomb repulsion

• two ways to detect this: Wigner surmise and Wigner semi-circle

• Wigner surmise: distribution for level spacing  $S = x_1 - x_2$ 

$$P(S) = \frac{S}{2\sigma^2} e^{-S^2/(4\sigma^2)}.$$

30

• mean level spacing 
$$\langle S \rangle = \int_0^\infty dS \, SP(S) = \sqrt{\pi} \sigma$$
.  $s = S/\langle S \rangle$ 

#### Wigner surmise

$$\odot$$
 distribution  $P(S) = rac{S}{2\sigma^2} e^{-S^2/(4\sigma^2)}$  for level spacing  $S = x_1 - x_2^{0.0}$ 

• mean level spacing 
$$\langle S \rangle = \int_0^\infty dS \, SP(S) = \sqrt{\pi} \sigma$$
.

$$\circ$$
 Wigner surmise for  $s=S/\langle S
angle$ :  $P(s)=rac{\pi}{2}se^{-\pi s^2/4}$  universal curve

- many RBM training runs, stochasticity due to mini-batches, collect histograms of x<sub>i</sub>
- vary learning rate and batch size [no ordering of eigenvalues by hand, induces bias!]

2

S

3

0.8

0.6

୍ଡ ଜୁ 0.4

0.2



#### Wigner surmise: 4 degenerate pairs

$$P(S) = \frac{S}{2\sigma^2} e^{-S^2/(4\sigma^2)}, \qquad \langle S \rangle = \sqrt{\pi}\sigma \qquad P(s) = \frac{\pi}{2} s e^{-\pi s^2/4}$$



## Wigner surmise: vary learning rate and batch size

• prediction:

 $\sigma_i^2 = (lpha / |\mathcal{B}|) \left( ilde{g}_i^2 / \Omega_i 
ight)$ 

- $\circ$  linear dependence on  $(lpha/|\mathcal{B}|)$
- mean level spacing

$$egin{aligned} \langle S_i 
angle &= \pi \sqrt{(lpha / |\mathcal{B}|)( ilde{g}_i^2 / \Omega_i)} \ &= a_{ ext{fit}} \sqrt{(lpha / |\mathcal{B}|)(\kappa_i^2 \Omega_i)} \end{aligned}$$

fit function includes

non-universal parameters as well





• for two modes:  $\rho(x) = \frac{e^{-x^2/(2\sigma^2)}}{4\sqrt{\pi}\sigma} \left[ 2e^{-x^2/(2\sigma^2)} + \sqrt{2\pi}\frac{x}{\sigma} \operatorname{Erf}\left(\frac{x}{\sqrt{2}\sigma}\right) \right]$ 

- broadened and flattened Gaussian
- fit  $\sigma$  parameter and position for each doubly degenerate mode

#### Wigner semi-circle

o fit to semi-circle for two different  $\kappa_i$  values with fixed learning rate and batch size

 $\rho(x) = \frac{e^{-x^2/(2\sigma^2)}}{4\sqrt{\pi}\sigma} \left[ 2e^{-x^2/(2\sigma^2)} + \sqrt{2\pi}\frac{x}{\sigma} \operatorname{Erf}\left(\frac{x}{\sqrt{2}\sigma}\right) \right]$ 

• Binder cumulant  $U_4 = -4/27 \approx -0.148$  for semi-circle (vanishes for Gaussian)



#### Wigner semi-circle and surmise

semi-circle

dependence on learning rate/batch size



consistency between surmise and semi-circle fits



#### Wigner surmise and semi-circle

✓ parameter  $\sigma$  scales as:  $\sigma_i^2 = (\alpha/|\mathcal{B}|) \quad (\tilde{g}_i^2/\Omega_i)$ universal scaling model-dependent

✓ stochasticity leads to universal features in trained models

derived that learning rate and finite batch size appear as ratio

✓ previously observed as empirical linear scaling rule

# Eigenvalue repulsion

- Coulomb interaction between all eigenvalues
- learned eigenvalue/target
- repulsion for nonzero learning rate/batch size
- no "perfect learning" unless stochasticity vanishes
- overfitting, generalisation, ...



#### Non-universal dynamics

• consider this for one mode only (drop the index)

$$V(x) = -\int^{x} dx' K(x') = -\frac{x^{2}}{2\kappa} - x - \mu^{2} \log(\mu^{2} - x)$$

• stationary distribution

$$P_s(x) = \frac{1}{Z} e^{-V(x)/g^2} = \frac{1}{Z} \exp\left[\frac{1}{g^2} \left(\frac{x^2}{2\kappa} + x + \mu^2 \log\left(\mu^2 - x\right)\right)\right]$$

#### Time-dependent dynamics

- assume continuous time limit exists
- analyse FPE for one mode:  $\partial_{\tau} P(x,\tau) = \partial_x \left( g^2 \partial_x K(x) \right) P(x,\tau)$
- o solve using standard stochastic quantisation/FP methods:  $P(x, \tau) = \sqrt{P_s(x)}\psi(x, \tau)$

• evolution: 
$$\partial_{\tau}\psi(x,\tau) = \left(g^2\partial_x^2 - \frac{1}{4g^2}\left[\partial_x V(x)\right]^2 + \frac{1}{2}\left[\partial_x^2 V(x)\right]\right)\psi(x,\tau) \equiv -2H_{\rm FP}\psi(x,\tau)$$
  
• Fokker-Planck Hamiltonian:  $H_{\rm FP} = \frac{1}{2}L^{\dagger}L$   
 $L^{\dagger} = -g\partial_x + \frac{1}{2g}\partial_x V(x)$   
 $L = +g\partial_x + \frac{1}{2g}\partial_x V(x)$  40

#### Quantum-mechanical bound state problem

•  $H_{\rm FP} = \frac{1}{2}L^{\dagger}L$  eigenvalue problem:  $H_{\rm FP}\psi_n(x) = E_n\psi_n(x)$ 



$$U(x) = \frac{1}{g^2} \left[ U_0(x) + g^2 U_1(x) \right]$$
$$U_0(x) = \frac{1}{8} \left[ \partial_x V(x) \right]^2$$
$$U_1(x) = -\frac{1}{4} \partial_x^2 V(x)$$

double well potential on interval  $0 \le x \le \mu^2$ 

#### Quantum-mechanical bound state problem

•  $H_{\rm FP}\psi_n(x) = E_n\psi_n(x)$  ground state exactly known:  $\psi_0(x) = \sqrt{P_s(x)}$ 

 $\circ$  width of solution depends on strength of the noise  $g^2$  : better description of target  $\kappa$ 



# Full time-dependent dynamics: learning

- combine Coulomb repulsion and drift
- from Marchenko-Pastur distribution
   to stochastic target distribution
- 10 modes, 4 doubly degenerate ones
- dynamics of  $P(\{x_i\}, t)$  described by FPE



effective description of learning dynamics in terms of eigenvalues

# Second application: Transformers

• Gaussian RBM has one weight matrix, target spectrum is known, essentially solvable

in more advanced architectures:

• many weight matrices, target spectra not known, do they even exist?

• what is the loss function landscape? localised minima, flat directions, ... ?

• empirical study following dynamics of eigenvalues of  $X = W^T W$ 

GA, O Hajizadeh, B Lucini, C Park, NeurIPS 2024 workshop *ML and the Physical Sciences*, <u>2411.13512</u> [cond-mat.dis-nn]

# Transformer: nano-GPT

- four attention blocks with each four attention heads
- $\circ$  each attention head: one key (K), one query (Q) and one value (V) matrix
- matrix sizes:  $M \times N = 64 \times 16$
- $\circ$  about 2.1  $\times$  10<sup>5</sup> parameters
- use AdamW optimiser
  - (highly adaptive stepsize during training)
- trained on opus of Shakespeare



• initialisation: eigenvalues of  $X = W^T W$  follow Marchenko-Pastur distribution



- $\circ$  appearance of tail in distribution (shown K matrix of layer 1)
- part of spectrum described by Marchenko-Pastur distribution is reduced, A < 1
- $\circ$  use area A and width  $\sigma^2$  as fit parameters during evolution



 $\circ$  evolution of area A and width  $\sigma^2$  during evolution (shown K matrix for all four layers)





15-25% of spectral weight moves to the tail

MP distribution broadens due to Brownian motion

# Transformer: Wigner surmise

- short-distance fluctuations: level spacing described by Wigner surmise
- o remains approximately described by RMT for real, symmetric matrices



iteration 0

iteration 1000

iteration 5000<sup>49</sup>

requires further understanding:

- what is the "final" target spectrum? does it even exist?
- tail drops as a power, what does this imply? can the power be understood?

significant part of the spectrum remains MP: random matrix elements

o how relevant is this part of the spectrum? remove? sparse weight matrices?

see also CH Martin, MW Mahoney, Traditional and Heavy-Tailed Self Regularization in Neural Network Models, 1901.08276



- o stochastic weight matrix dynamics has universal features described by RMT
- o manifests in eigenvalue repulsion, quantified by Wigner surmise and semi-circle
- o fundamental limitation of learning for finite learning rate and batch size
- stochasticity controlled by learning rate/batch size: reduce ratio to improve agreement with target distribution, but stochasticity allows for generalisation

# Outlook

- Dyson Brownian motion is present at "microscopic" level
- o how does it manifest itself for more advanced architectures?
- is there universality beyond level repulsion (power law tails)?
- what are the practical implications? description of learning, algorithmic advances?