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Random Matrix Theory (RMT)

o   developed by Wigner and Dyson to describe nuclear spectra (1959-1962)

o   universal features: level spacing, Coulomb repulsion, Wigner surmise, fluctuations

o   non-universal behaviour: spectral density

example:
o   successfully applied in QCD to describe Dirac operator
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JJM Verbaarschot and T Wettig, Random matrix theory and chiral symmetry in QCD 
Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [arXiv:hep-ph/0003017 [hep-ph]].

https://inspirehep.net/literature/524532


RMT and machine learning

o   different context: machine learning and weight matrix dynamics

o   neural networks: layers of nodes, connected by weight matrices

o   weight matrices are updated using e.g. stochasIc gradient descent (SGD) 

o   stochasIc matrix dynamics à Dyson Brownian moIon à RMT features

v  aim: further understanding of learning by characterising weight matrix dynamics

v  idenIfy universal behaviour and limitaIons of SGD during and aPer training
4



Outline

o   some general comments on stochastic weight matrix updates

o   connection to Dyson Brownian motion and stochastic Coulomb gas

o   universal properties of stationary distribution

o   application in Restricted Boltzmann Machine (RBM) and Transformer (nano-GPT)

o   summary and outlook
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Stochastic weight matrix dynamics

o   consider some          weight matrix

o   update (e.g. stochasIc gradient descent):        with 

o   obtained from loss funcIon  , learning rate

o   is esImated using a batch      with batch size       : 

o   fluctuaIons controlled by finite batch size (CLT):
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Stochastic weight matrix dynamics

o   stochastic update       becomes 

o   or in terms of the gradient of the loss function: 
 

7



From rectangular to symmetric matrices

o         is                matrix: singular value decomposiIon:

o   singular values:    [take  without loss of generality] 

o   introduce symmetric semi-posiIve combinaIon:

o   and focus on the singular/eigenvalues (invariant under leP/right rotaIons on      ):

o   stochasIc dynamics: 
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Initialisation: Marchenko-Pastur distribution

o   if initial weight matrix             then      follows Marchenko-Pastur distribution

ü  how to choose      : distribution should depend on    only, safe to take large .          limit

ü  spectrum is bounded for all    (relevant for RBMs below) : 
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Stochastic matrix dynamics: Dyson Brownian 
motion and the stochastic Coulomb gas

o   framework to consider stochasIc matrix dynamics for symmetric matrix 

o   Dyson Brownian moIon (in conInuous Ime for now, see below):

o   eigenvalues then evolve according to

         where
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Dyson Brownian motion, stochastic Coulomb gas

o   eigenvalues dynamics:

o   can be derived using 2nd order perturbation theory 

o   Coulomb term: eigenvalue repulsion [Wigner, Dyson 1959-1962, for nuclear spectra] 

o   Fokker-Planck equation (FPE) for distribution of eigenvalues:  
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Dyson Brownian motion, stochastic Coulomb gas

o   FPE:

o   staIonary distribuIon:

o   with parIIon funcIon: 

o   and provided driP can be derived from a potenIal

o   known as Coulomb gas, describes universal features of random matrices
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Back to weight matrix dynamics 

o   stochastic dynamics

o   what can be carried over from Dyson’s matrix dynamics? implications? universality?

o   eigenvalue equation:

o   make explicit learning rate and batch size dependence
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Back to weight matrix dynamics 

o   eigenvalue dynamics:

o   insert learning rate and batch size dependence:

o   no usual scaling of driP and noise with learning rate (Ito calculus:     ,       ): 
     no obvious conInuous Ime limit (SDE), only in some weak sense

o   known issue: from SGD to SDE but is in fact blessing (see below)
14
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Stationary distribution

o   distribution for fixed   : 

o   make explicit dependence on learning rate and batch size

o   if drift vanishes at                , expand potential

o   exponential is Gaussian with variance

15
universal scaling with 
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Linear scaling relation

o  dependence on      in training has been observed before, empirically

ü  P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al., 
 Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]

ü  S.L. Smith and Q.V. Le, 

 A Bayesian PerspecAve on GeneralizaAon and StochasAc Gradient Descent [1710.06451]
ü  S.L. Smith, P. Kindermans and Q.V. Le, 

 Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o  finds a natural place in the framework of Dyson Brownian moIon and Coulomb gas
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Applications and implications 

o   so far, the derivation is general: prediction of eigenvalue distribution after learning 

o   apply to actual ML models to observe universal features and support derivation

§   teacher-student model

§   Gaussian Restricted Boltzmann Machine

§   Transformer
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builds on previous analysis of RBM: 
GA, B Lucini, C Park, Phys. Rev. D 109 (2024) 034521 
[2309.15002 [hep-lat]]
current analysis: PRE 111 (2025) 1, 015303 
[2407.16427 [cond-mat.dis-nn]]

GA, O Hajizadeh, B Lucini, C Park
2411.13512 [cond-mat.dis-nn] 

https://arxiv.org/abs/2309.15002
https://arxiv.org/abs/2407.16427
https://arxiv.org/abs/2411.13512


Restricted Boltzmann Machine: generative network

o   energy-based method

o   probability distribution

o   binary or continuous d.o.f.
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Scalar field RBM

o   distribution:

o              w.       weight matrix

o   induced distribution on visible layer

o    kernel

o    eigenvalues
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Scalar field RBM as a lattice field theory

o   treat RBM as a lattice field theory with bi-linear quadratic action

o   induced distribution on visible layer

o   all information is stored in quadratic operator, with spectrum

20



o  spectrum  

o  what if                 ? not all eigenvalues can be reproduced 

o  role of hyperparameter       ? if chosen  too low, not all eigenvalues can be reproduced

v  both        and       act as ultraviolet regulators 
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Scalar field RBM as an ultraviolet regulator

GA, B Lucini, C Park, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]

https://arxiv.org/abs/2309.15002


o   apply to MNIST data set (28 x 28 images)

o   compute spectrum of two-point 
      correlator

o   inverse spectrum

o   infrared safe

o   ultraviolet divergent

RBM as ultraviolet regulator
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o   

o   fixed RBM mass 

o   spectrum regulated

o   infrared modes learned   
     approximately correctly
     (see below)

MNIST with fixed RBM mass
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what is the effect of
including incomplete 
spectrum?

removal of 
ultraviolet modes 
affects 
generative power

MNIST with 𝑁! ≤ 𝑁"
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Back to Dyson Brownian motion

o   weight matrix is updated using persistent contrasIve divergence (PCD)

o   maximise likelihood/minimise KL divergence

o   denote eigenvalues of    as

o   PCD is stochasIc:
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Back to Dyson Brownian motion

o   maximise likelihood/minimise KL divergence

o   denote target distribution has eigenvalues with       

o    drift in instantaneous eigen-basis:

o   fixed point of drift:              , spectrum learnt correctly 

o   where can we observe the effects of RMT?   
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Scalar field RBM

o   implement for simple target distribuIon: scalar field in LFT in 1 dimension

o   spectrum is free dispersion relaIon:

o   each mode is doubly degenerate, except lowest and highest one

o   example for 10 modes

o   degenerate modes split for clarity  
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RBM evolution

weight matrix updates using persistent contrastive divergence with mini-batches

 

 initial Marchenko-Pastur distribution   towards target spectrum 
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RBM evolution and RMT universality

o   weight matrix updates using persistent contrastive divergence with mini-batches

o   no sharp lines, distributions around target spectrum

o   test predictions from RMT:

§   induced Coulomb term and eigenvalue 
     repulsion (universal)

§   potential from drift (non-universal)
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Universal RMT predictions

o   consider two degenerate modes only: Coulomb gas description

o   eigenvalues cannot both be equal to      due to Coulomb repulsion

o   two ways to detect this: Wigner surmise and Wigner semi-circle

o   Wigner surmise: distribution for level spacing

o   mean level spacing   
30



Wigner surmise

o   distribuIon     for level spacing

o   mean level spacing   

o   Wigner surmise for           :    universal curve

§   many RBM training runs, stochasIcity due to mini-batches, collect histograms of

§   vary learning rate and batch size [no ordering of eigenvalues by hand, induces bias!]   
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Wigner surmise: 4 degenerate pairs
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Wigner surmise: vary learning rate and batch size
o   prediction:

o   linear dependence on

o   mean level spacing 

o   fit function includes 
     non-universal parameters as well 33
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Wigner semi-circle

o   spectral density:

o   for two modes:

o   broadened and flattened Gaussian

o   fit    parameter and position for each doubly degenerate mode  
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Wigner semi-circle

o   fit to semi-circle for two different      values with fixed learning rate and batch size
o   Binder cumulant                for semi-circle (vanishes for Gaussian)
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Wigner semi-circle and surmise
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Wigner surmise and semi-circle

ü  parameter      scales as:   

ü  stochasIcity leads to universal features in trained models

ü  derived that learning rate and finite batch size appear as raIo

ü  previously observed as empirical linear scaling rule 
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Eigenvalue repulsion
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Non-universal dynamics

o   distribuIon

o   RBM specific driP     determines potenIal

o   consider this for one mode only (drop the index)

o   staIonary distribuIon
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Time-dependent dynamics

o   assume continuous time limit exists

o   analyse FPE for one mode:

o   solve using standard stochastic quantisation/FP methods:

o   evolution:

o   Fokker-Planck Hamiltonian:
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o    eigenvalue problem:

o   explicit form:

      double well potential on interval  
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Quantum-mechanical bound state problem

o      ground state exactly known:

o   width of solution depends on strength of the noise      : better description of target
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Full time-dependent dynamics: learning

o   combine Coulomb repulsion and drift

o   from Marchenko-Pastur distribution
      to stochastic target distribution

o   10 modes, 4 doubly degenerate ones

o   dynamics of        described by FPE

o   effective description of learning dynamics in terms of eigenvalues
43



Second application: Transformers

o   Gaussian RBM has one weight matrix, target spectrum is known, essentially solvable

in more advanced architectures:
 
o  many weight matrices, target spectra not known, do they even exist?

o  what is the loss function landscape? localised minima, flat directions, … ?

o  empirical study following dynamics of eigenvalues of 

GA, O Hajizadeh, B Lucini, C Park, NeurIPS 2024 workshop ML and the Physical Sciences, 2411.13512 [cond-mat.dis-nn] 

https://arxiv.org/abs/2411.13512


Transformer: nano-GPT

o   four attention blocks with each four attention heads
o   each attention head: one key (𝐾), one query (𝑄) and one value (𝑉) matrix 
o   matrix sizes: 𝑀	×	𝑁 = 64	×	16
o   about 2.1	×	10! parameters 
o   use AdamW optimiser 
     (highly adaptive stepsize during training)
o   trained on opus of Shakespeare
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Transformer: empirical analysis

o   initialisation: eigenvalues of  follow Marchenko-Pastur distribution
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Transformer: empirical analysis

o   appearance of tail in distribution (shown 𝐾 matrix of layer 1)
o   part of spectrum described by Marchenko-Pastur distribution is reduced, 𝐴 < 1
o   use area 𝐴 and width 𝜎" as fit parameters during evolution
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Transformer: empirical analysis

o  evoluIon of area 𝐴 and width 𝜎" during evoluIon (shown 𝐾 matrix for all four layers)
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Transformer: Wigner surmise

o   short-distance fluctuations: level spacing described by Wigner surmise
o   remains approximately described by RMT for real, symmetric matrices
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Transformer: empirical analysis

requires further understanding:

o   what is the “final” target spectrum? does it even exist?
o   tail drops as a power, what does this imply? can the power be understood?

significant part of the spectrum remains MP: random matrix elements

o   how relevant is this part of the spectrum? remove? sparse weight matrices?
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see also CH Marcn, MW Mahoney, Tradi>onal and Heavy-Tailed Self Regulariza>on in Neural Network Models, 1901.08276 

https://arxiv.org/abs/1901.08276


Summary

o   stochastic weight matrix dynamics has universal features described by RMT

o   manifests in eigenvalue repulsion, quantified by Wigner surmise and semi-circle

o   fundamental limitation of learning for finite learning rate and batch size

o   stochasticity controlled by learning rate/batch size:  reduce ratio to improve
      agreement with target distribution, but stochasticity allows for generalisation
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Outlook

o   Dyson Brownian moIon is present at “microscopic” level

o   how does it manifest itself for more advanced architectures?

o   is there universality beyond level repulsion (power law tails)?

o   what are the pracIcal implicaIons? descripIon of learning, algorithmic advances?
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